

Adding Land Variables to the AIFS and introduction to Direct Observation Prediction (AI-DOP)

Ewan Pinnington

ewan.pinnington@ecmwf.int

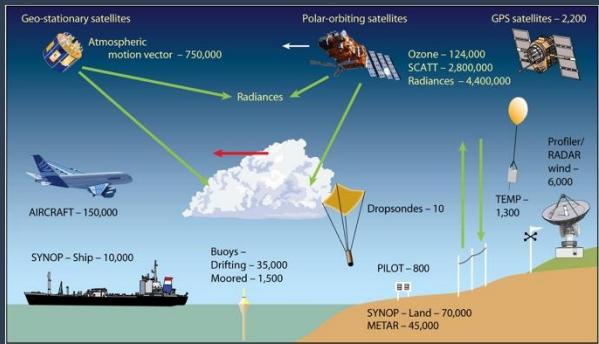
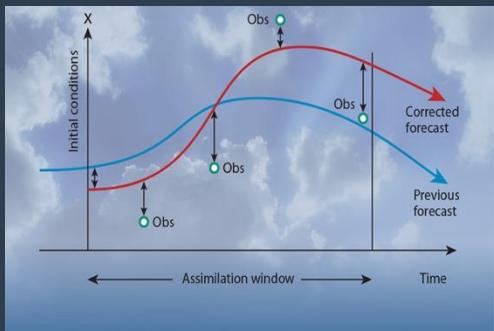
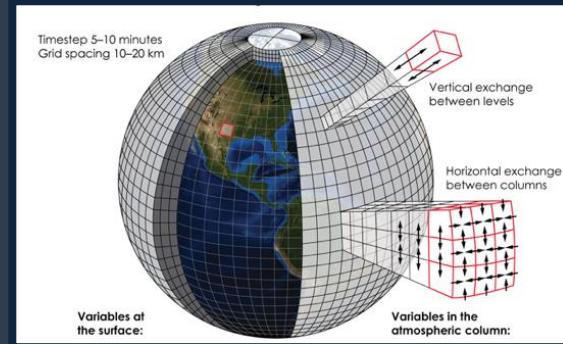
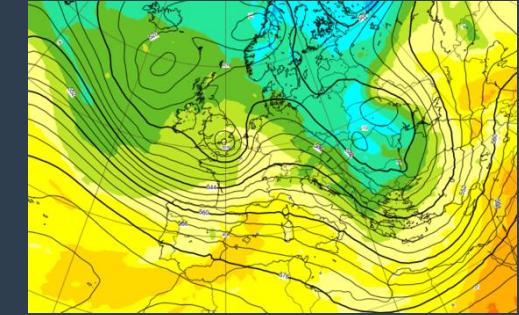
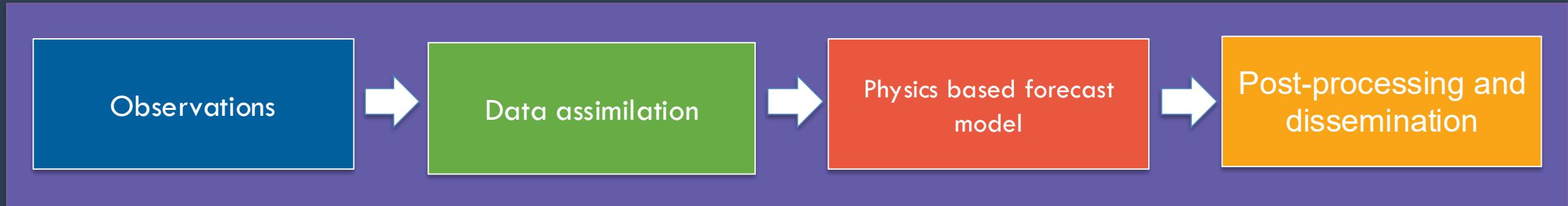
European Centre for Medium-Range Weather Forecasts

© ECMWF February 12, 2026

Overview

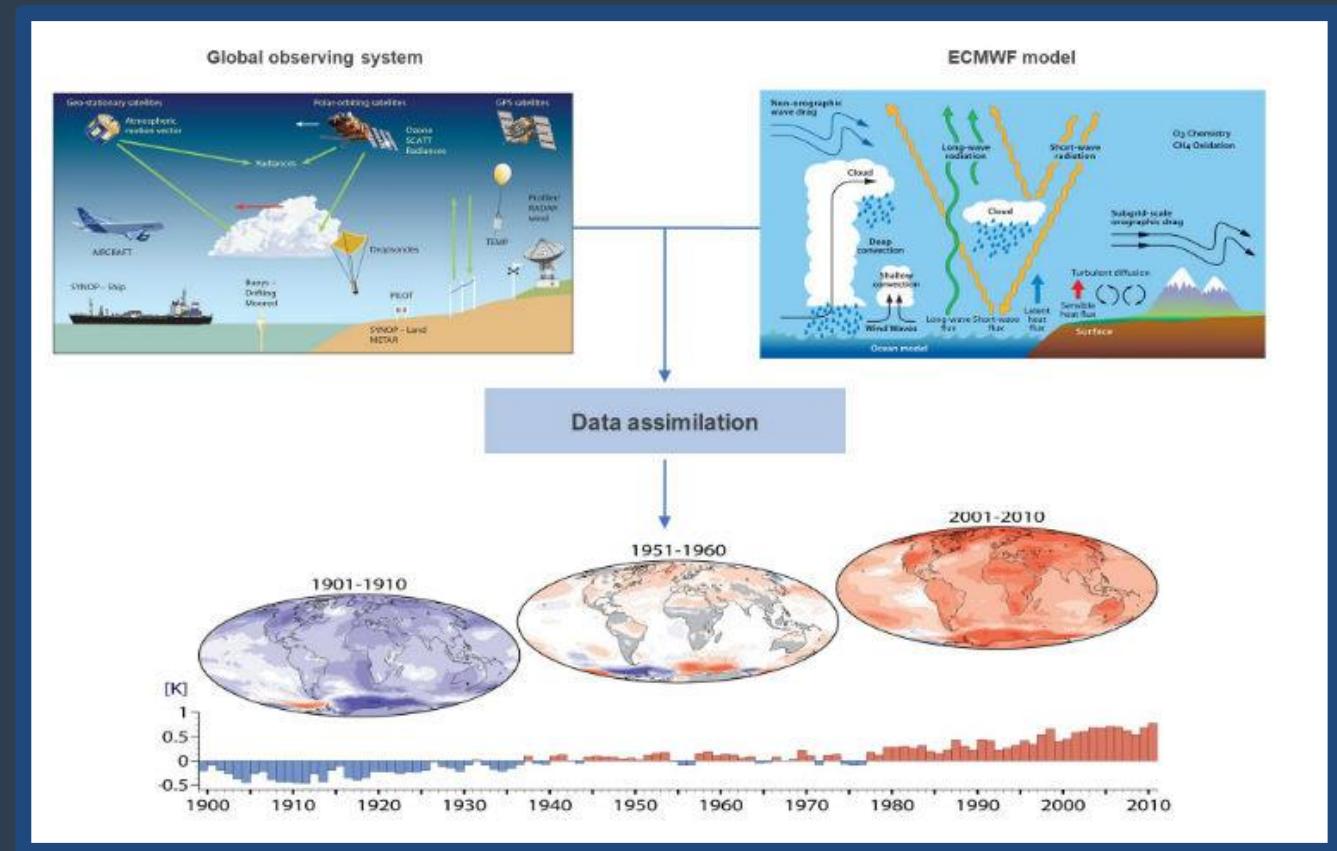
- Traditional Weather Forecasting Workflow:
 - How are Weather Forecasts made with the traditional system
- Artificial Intelligence Forecasting System (AIFS):
 - Where are we starting to use Machine Learning (ML) for weather forecasting?
 - How have we added land variables into these new ML systems
- Direct Observation Prediction (AI-DOP):
 - Making Weather Forecasts directly from observations using ML
- Summary

How do we make Weather Forecasts



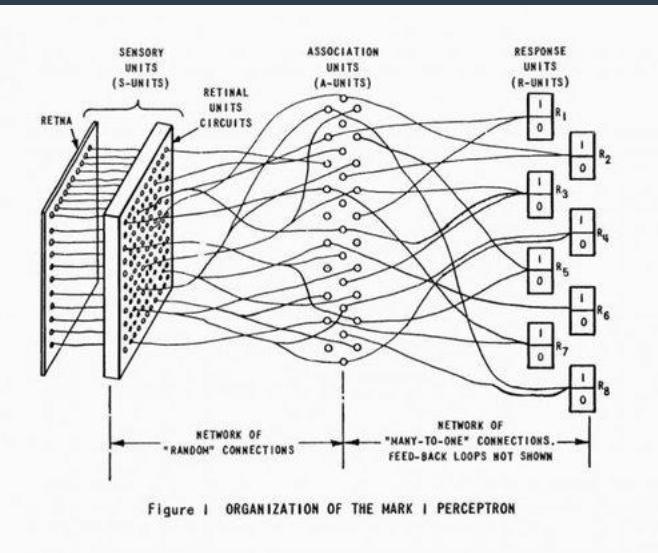
ERA5: blended observations and physics for over 50 years

- Run Data Assimilation system with available historical observations to get best estimates to the state of the atmosphere
- Available 1940 to present
- ~ 0.25 degree resolution
- Hourly estimates to state of the atmosphere combining observations and model physics
- Very large dataset! < 5 Petabytes
- ERA6 entering production soon!



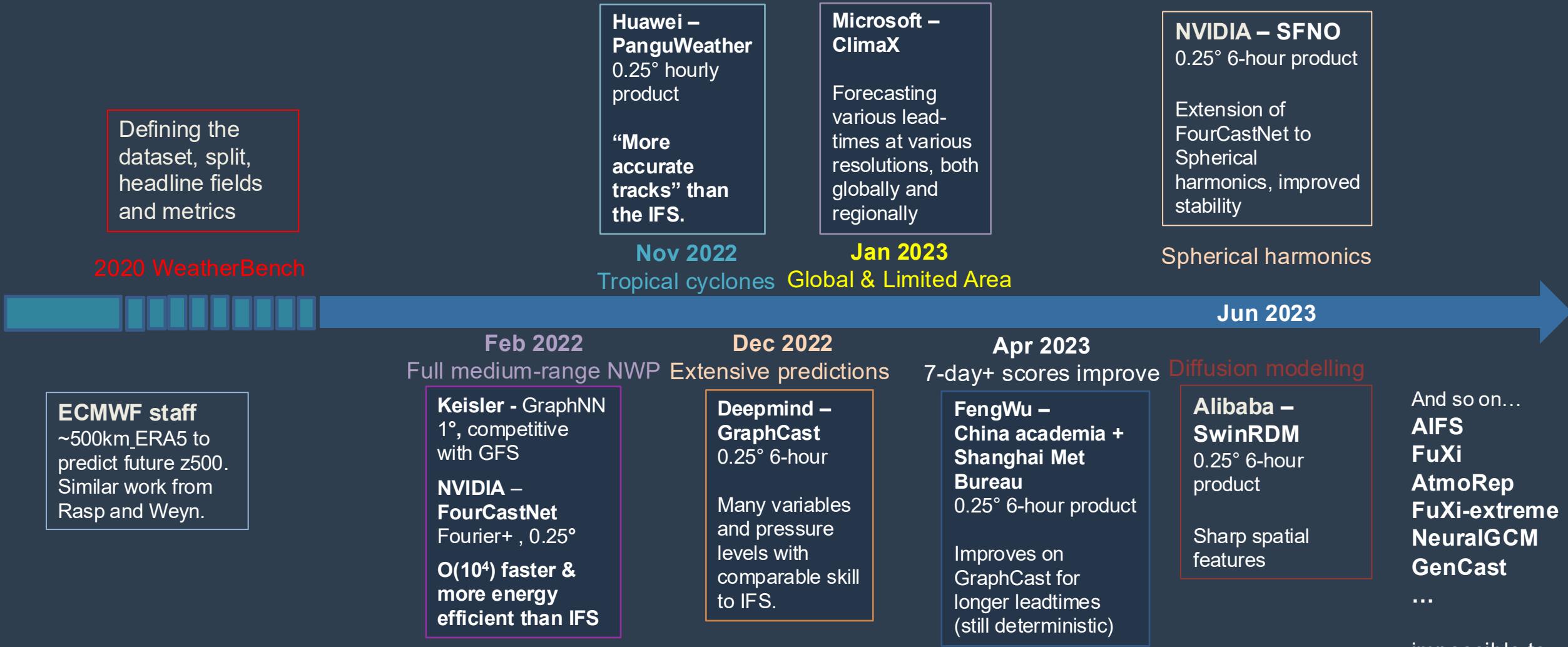
Step-back: Rise of Machine Learning...

- Machine Learning not a “new” idea
- Combination of access to ever increasing data volume and progress in compute (GPUs) makes its application possible and much more effective now
- Increased compute power (and available data) makes machine learning possible today
 - Explosion in data volumes following digitisation
 - “Domain specific compute architectures” e.g. GPUs
- Data produced by ECMWF presents significant opportunity for training a “Data-Driven” model

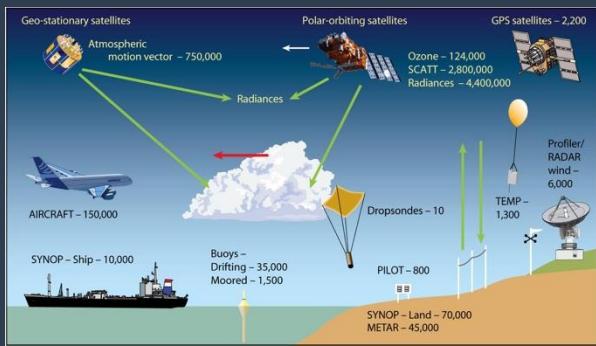
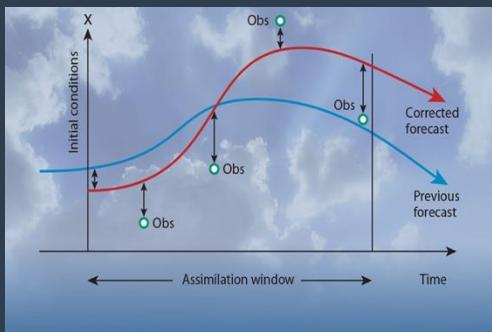
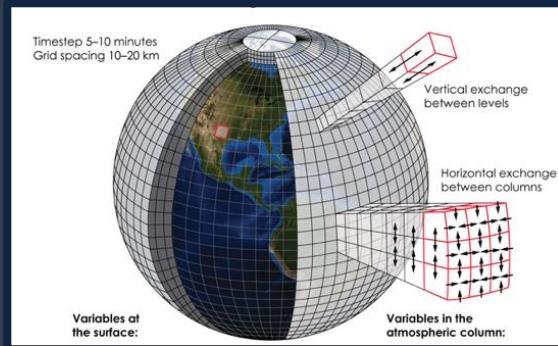
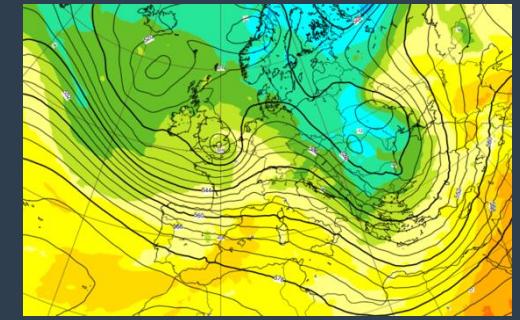
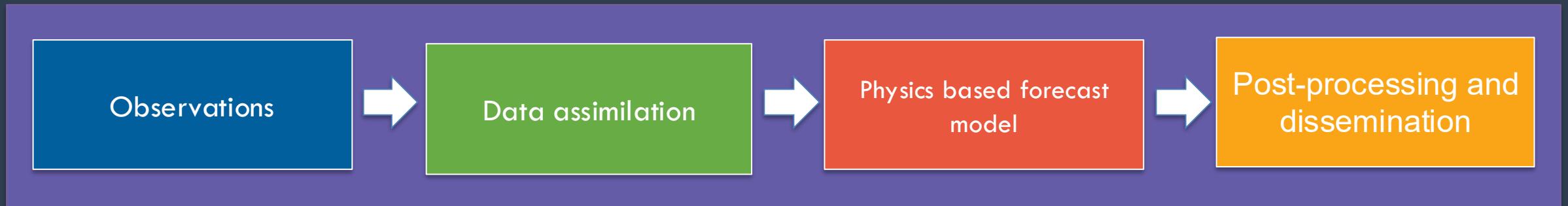


Frank Rosenblatt programming his Perceptron, 1970s

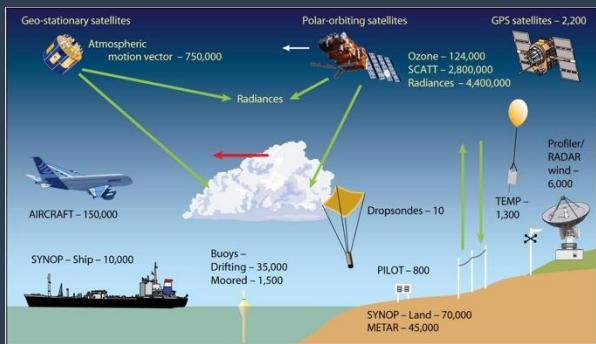
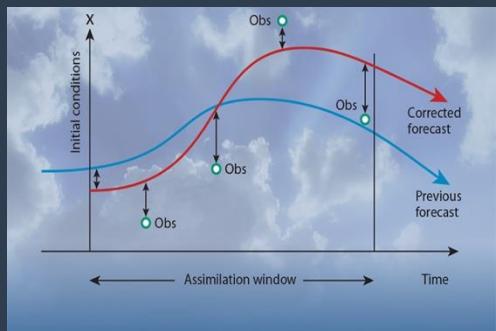
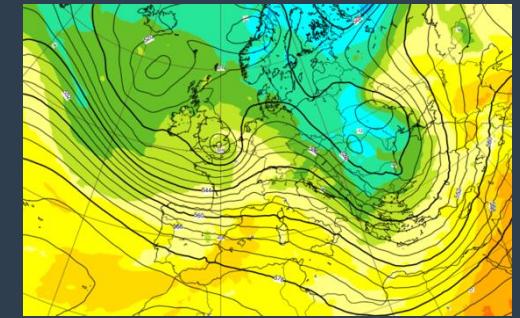
Step-back: Rise of Machine Learning...



AIFS: Data-driven Weather Forecasting System

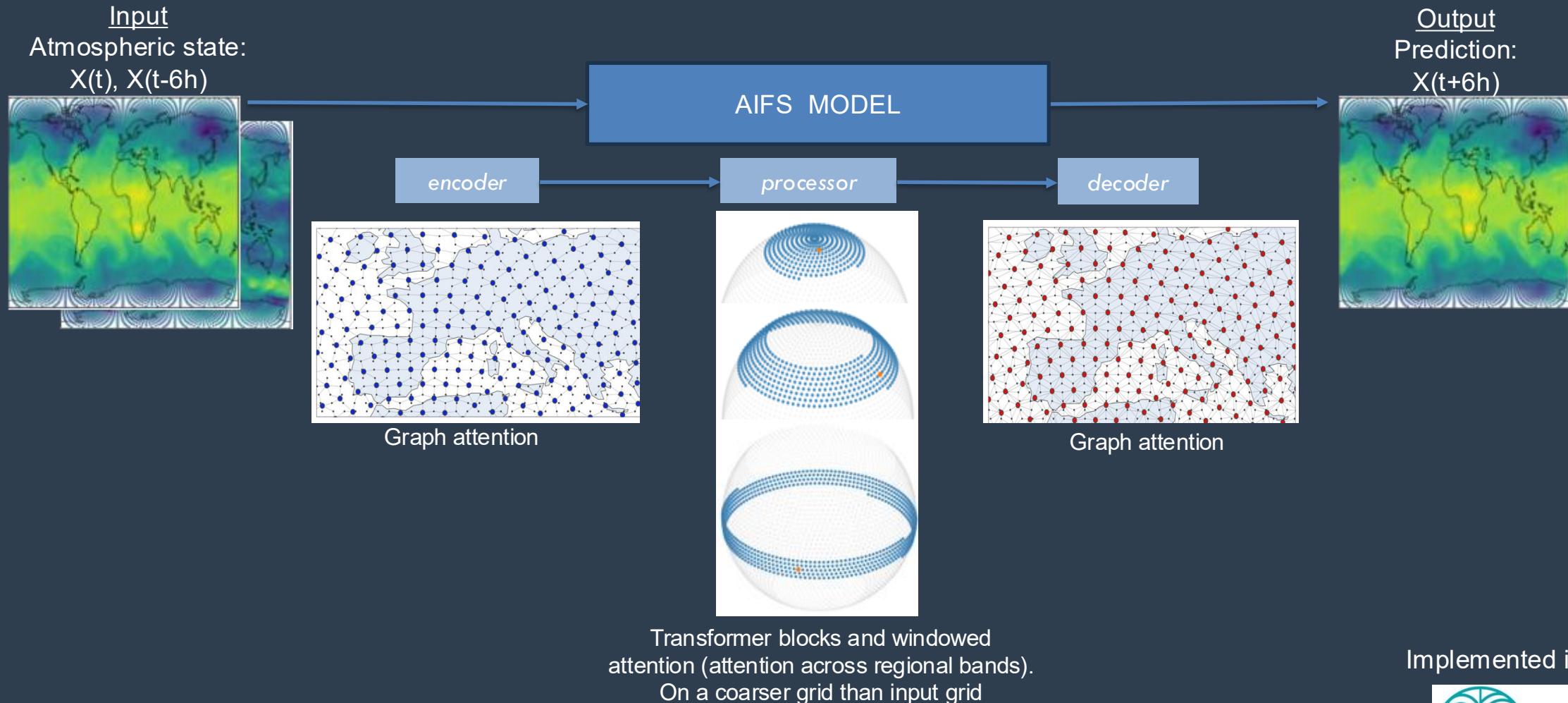


AIFS: Data-driven Weather Forecasting System



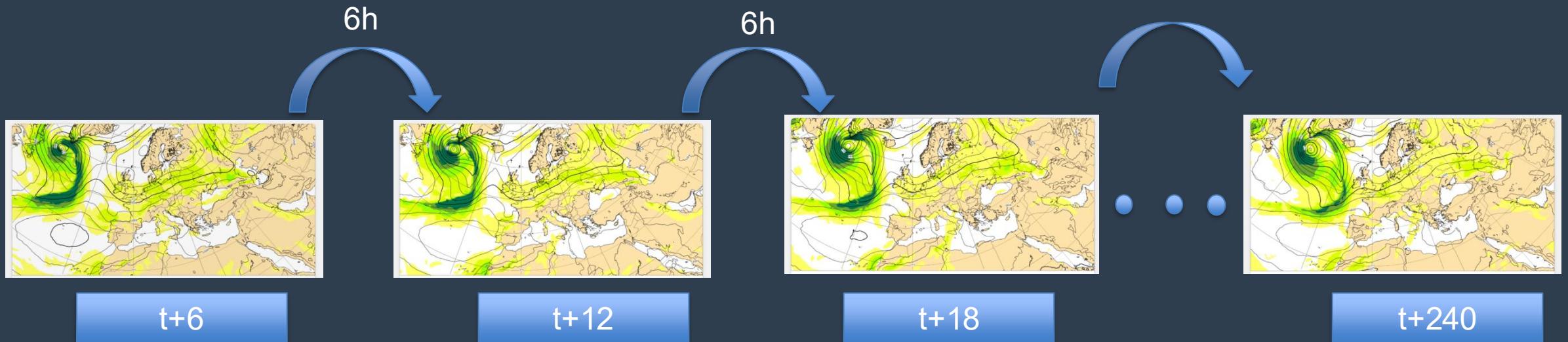
AIFS: Data-driven Weather Forecasting System

Lang et al. 2024a
<https://arxiv.org/abs/2406.01465>



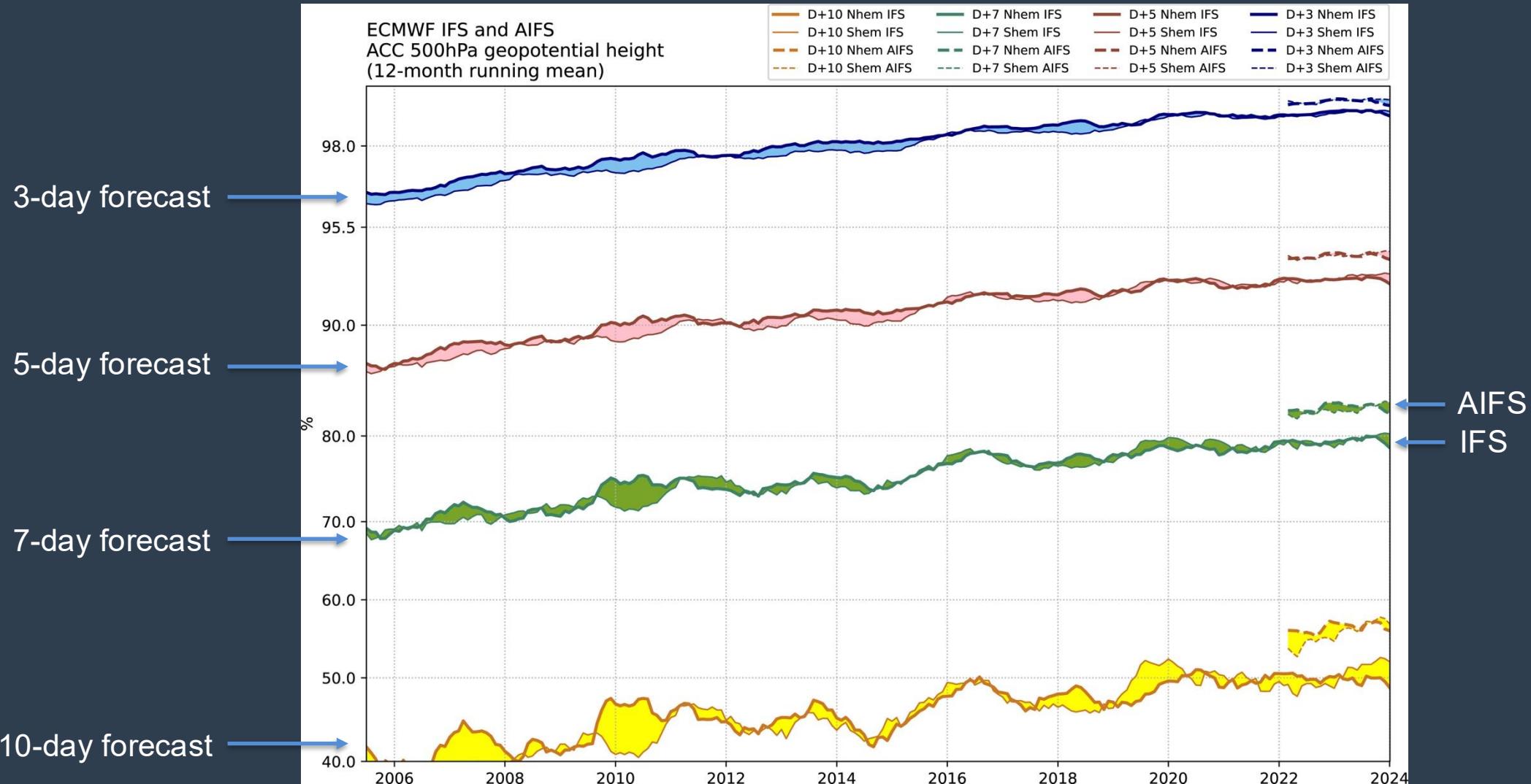
INFERENCE

Once the model is trained, we can generate predictions stepping e.g. 6h from analysis to analysis



The forecast is then autoregressively stepping 6h into the future $x_n = f(x_{n-1}) \dots$

AIFS: Forecast Performance



AIFS: Case Study

Forecast Lead Time

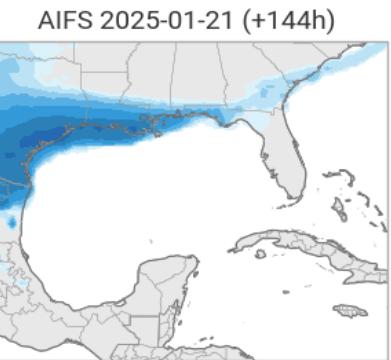
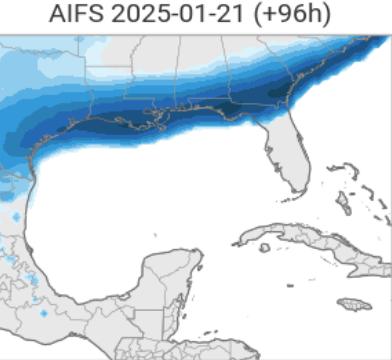
DAY 10

DAY 8

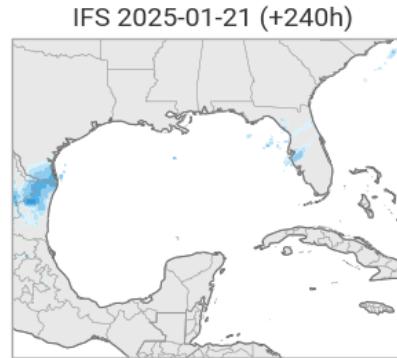
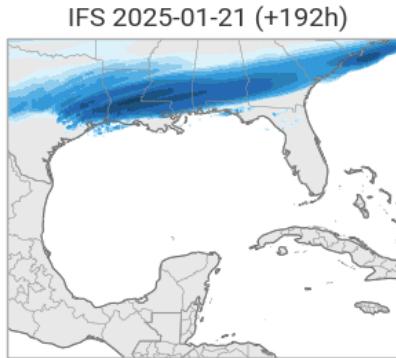
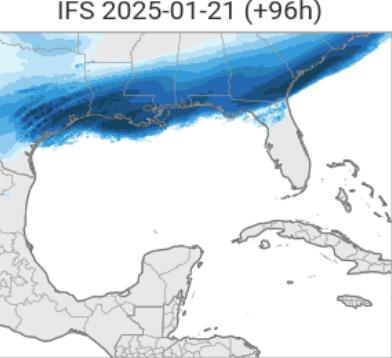
DAY 6

DAY 4

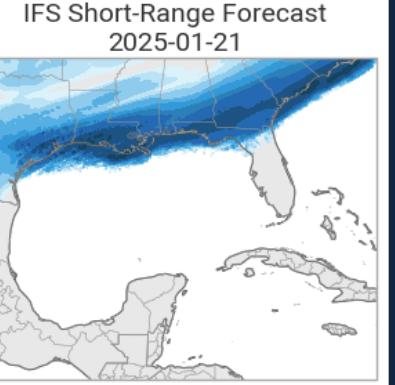
AIFS



IFS

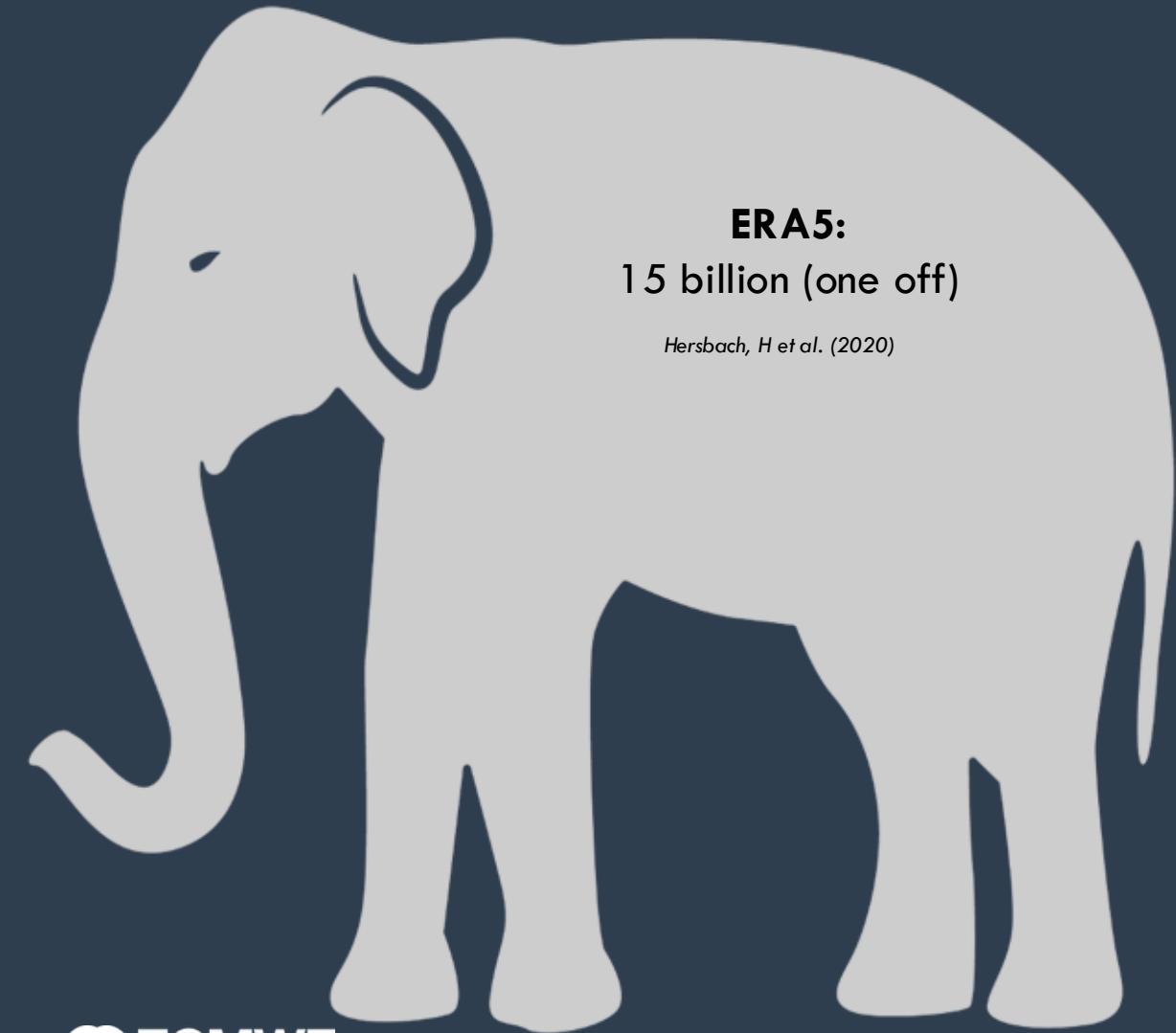


Best estimate



AIFS: Efficiency and Cost

Gain in time and energy



ERA5:
15 billion (one off)

Hersbach, H et al. (2020)

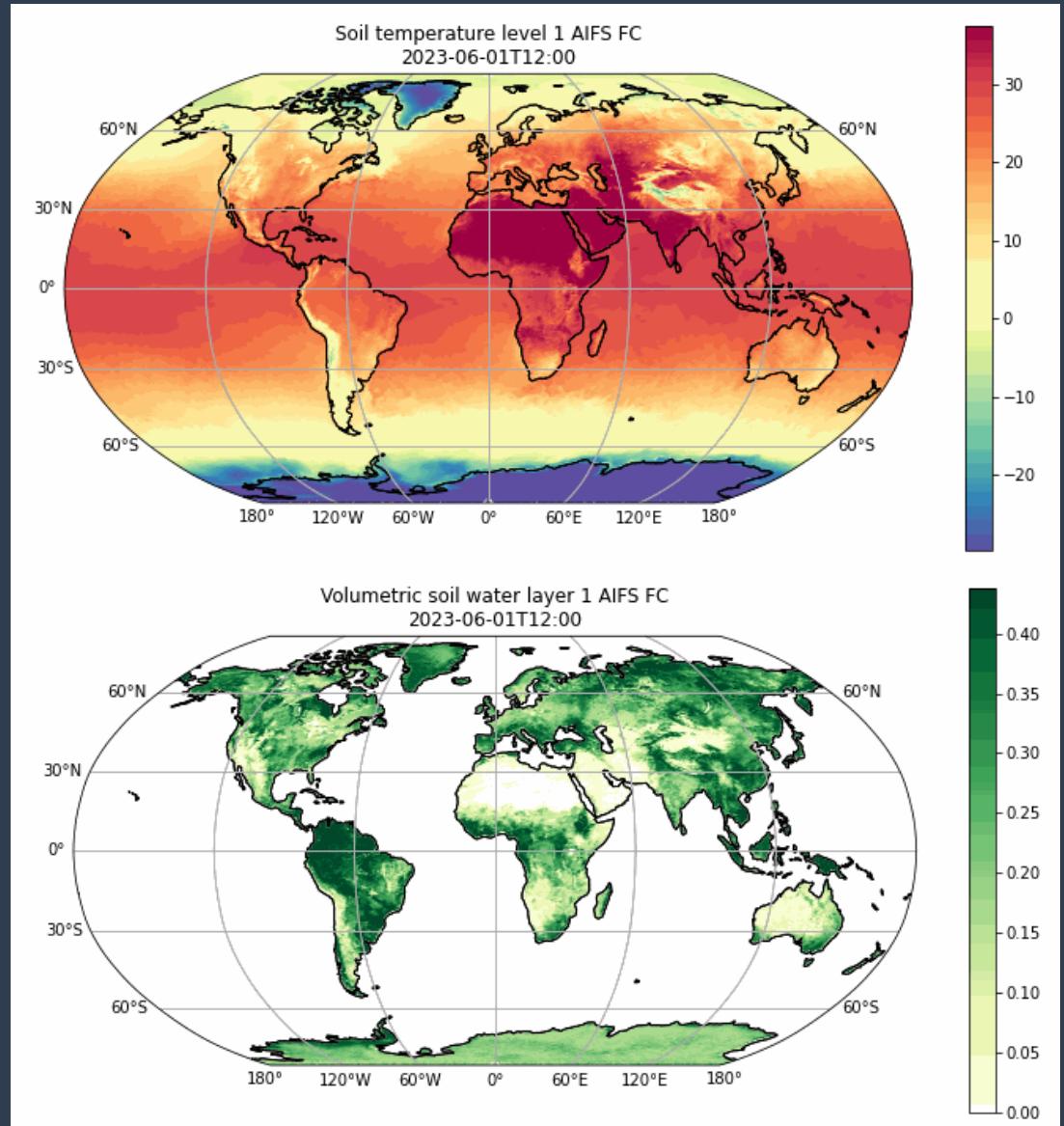
 ECMWF

ECMWF HRES:
180 000
per forecast

AI Model:
0.3
per forecast

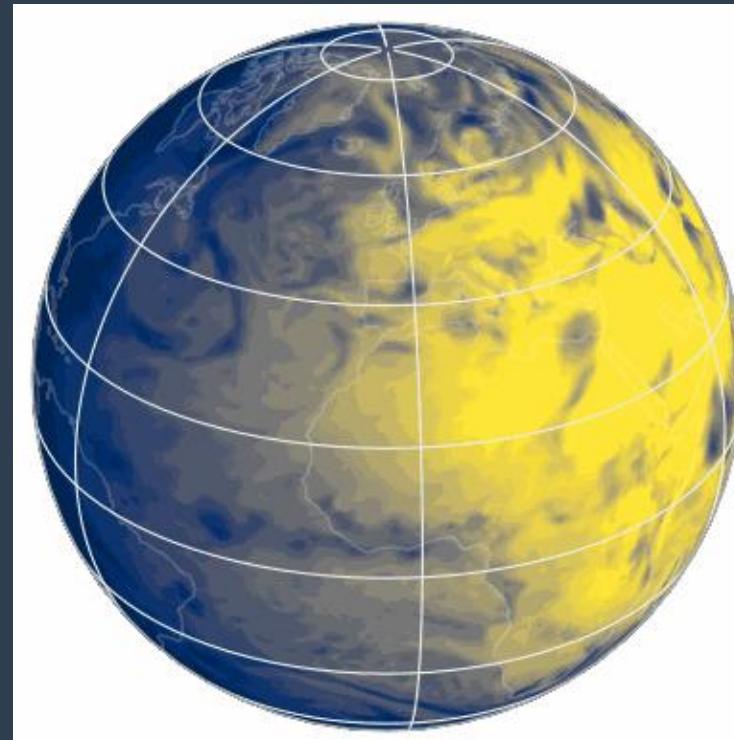
AIFS Single 1.0 – Adding Land and Energy Sector Variables

- As part of first operations release new variables included in AIFS 1.0 model
- New variables added to AIFS 1.0
 - Prognostics:
 - Soil moisture (layer 1 + 2)
 - Soil temperature (layer 1 + 2)
 - Diagnostics:
 - Cloud covers (tcc, lcc, mcc, hcc)
 - Surface radiations (strd, ssrd)
 - 100m winds (100u, 100v)
 - Snow fall (sf)
 - Runoff (ro)

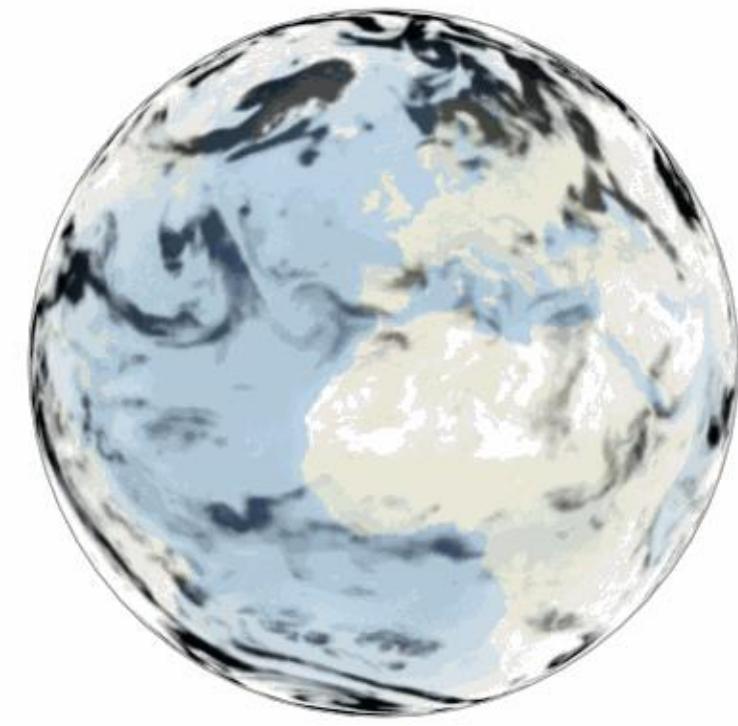


AIFS Single 1.0 – Adding Land and Energy Sector Variables

- As part of first operations release new variables included in AIFS 1.0 model
- New variables added to AIFS 1.0
 - Prognostics:
 - Soil moisture (layer 1 + 2)
 - Soil temperature (layer 1 + 2)
 - Diagnostics:
 - Cloud covers (tcc, lcc, mcc, hcc)
 - Surface radiations (strd, ssrd)
 - 100m winds (100u, 100v)
 - Snow fall (sf)
 - Runoff (ro)



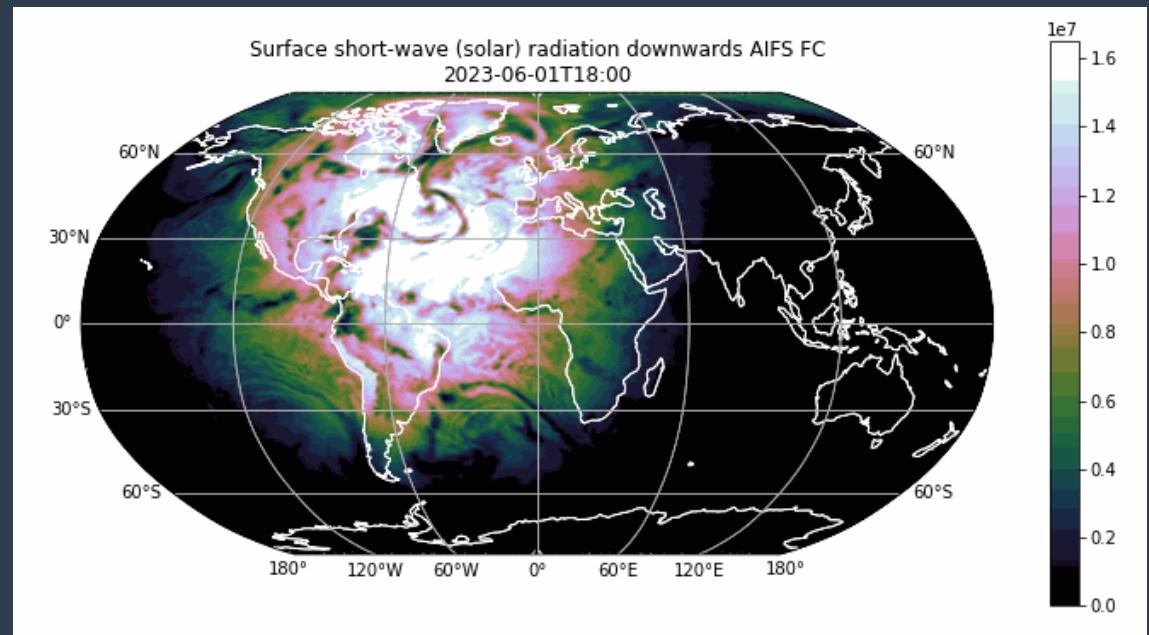
Surface Solar Radiation



Cloud Cover

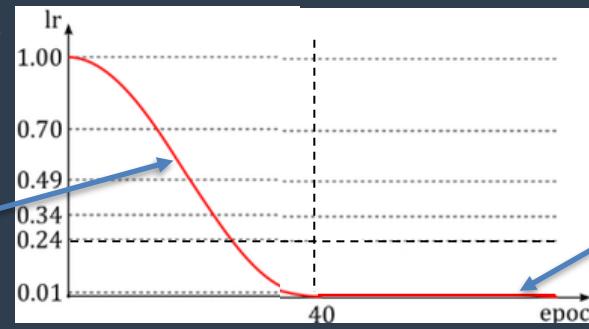
AIFS Single 1.0 – Development Procedure

- Build new datasets through [anemoi-datasets](https://github.com/ecmwf/anemoi-datasets)
github.com/ecmwf/anemoi-datasets
 - New variables, new years of data, etc.
 - Now training on
 - ERA5: 1979-2022 (1-step, 6-hour forecasts)
 - IFS-Operations: 2016-2022 (fine-tuning/rollout, 6 to 72-hour forecasts)
- Decide which features to include in release from [anemoi-core](https://github.com/ecmwf/anemoi-core) github.com/ecmwf/anemoi-core
- Train example models at **o96** (~1 degree) resolution with varying configurations
- For most promising models train versions at **n320** (~30 km) resolution
- Perform more rigorous validation and decide on final candidate



Learning Rate

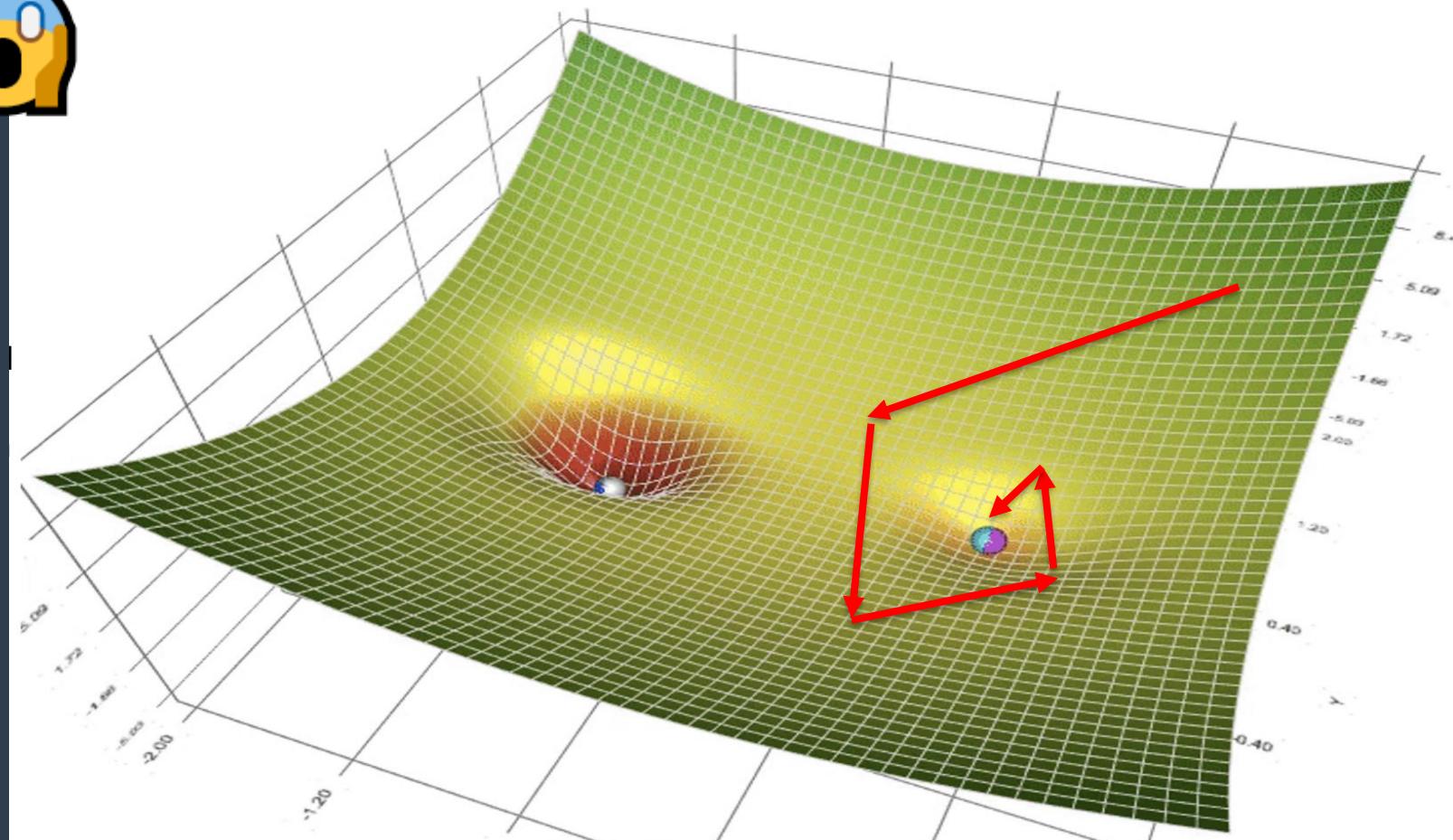
ERA5 training



Fine-tuning to operations

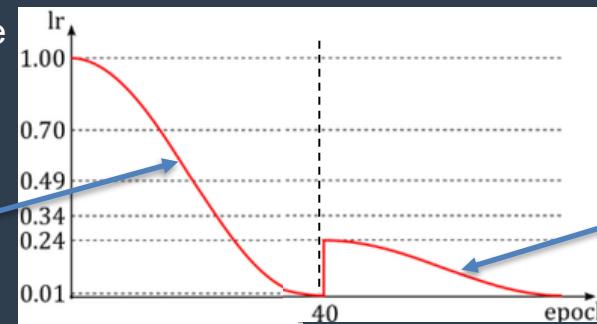
AIFSv1 candidate1 vs AIFSv0.2.1

	n.hem			s.hem			tropics		
	ccaf/seeps	rmsef	stdaf	ccaf/seeps	rmsef	stdaf	ccaf/seeps	rmsef	stdaf
an.z	50	blue	blue	blue	green	green	green	green	green
	100	blue	blue	blue	green	green	green	green	green
	250	orange	orange	orange	green	green	green	green	green
	500	orange	orange	orange	green	green	green	green	green
	850	orange	orange	orange	green	green	green	green	green
msl		orange	orange	orange	green	green	green	green	green
t	50	blue	blue	blue	green	green	green	green	green
	100	blue	blue	blue	green	green	green	green	green
	250	orange	orange	orange	green	green	green	green	green
	500	orange	orange	orange	green	green	green	green	green
	850	orange	orange	orange	green	green	green	green	green
2t		orange	orange	orange	green	green	green	green	green
ff	50	blue	blue	blue	green	green	green	green	green
	100	orange	orange	orange	green	green	green	green	green
	250	orange	orange	orange	green	green	green	green	green
	500	orange	orange	orange	green	green	green	green	green
	850	orange	orange	orange	green	green	green	green	green
10ff		orange	orange	orange	green	green	green	green	green
pb.z	50	blue	blue	blue	blue	blue	blue	blue	blue
	100	blue	blue	blue	blue	blue	blue	blue	blue
	250	orange	orange	orange	orange	orange	orange	orange	orange
	500	orange	orange	orange	orange	orange	orange	orange	orange
	850	orange	orange	orange	orange	orange	orange	orange	orange
t	50	blue	blue	blue	blue	blue	blue	blue	blue
	100	blue	blue	blue	blue	blue	blue	blue	blue
	250	orange	orange	orange	orange	orange	orange	orange	orange
	500	orange	orange	orange	orange	orange	orange	orange	orange
	850	orange	orange	orange	orange	orange	orange	orange	orange
ff	50	blue	blue	blue	blue	blue	blue	blue	blue
	100	orange	orange	orange	orange	orange	orange	orange	orange
	250	orange	orange	orange	orange	orange	orange	orange	orange
	500	orange	orange	orange	orange	orange	orange	orange	orange
	850	orange	orange	orange	orange	orange	orange	orange	orange
2t		orange	orange	orange	orange	orange	orange	orange	orange
10ff		orange	orange	orange	orange	orange	orange	orange	orange
tp		blue	blue	blue	blue	blue	blue	blue	blue



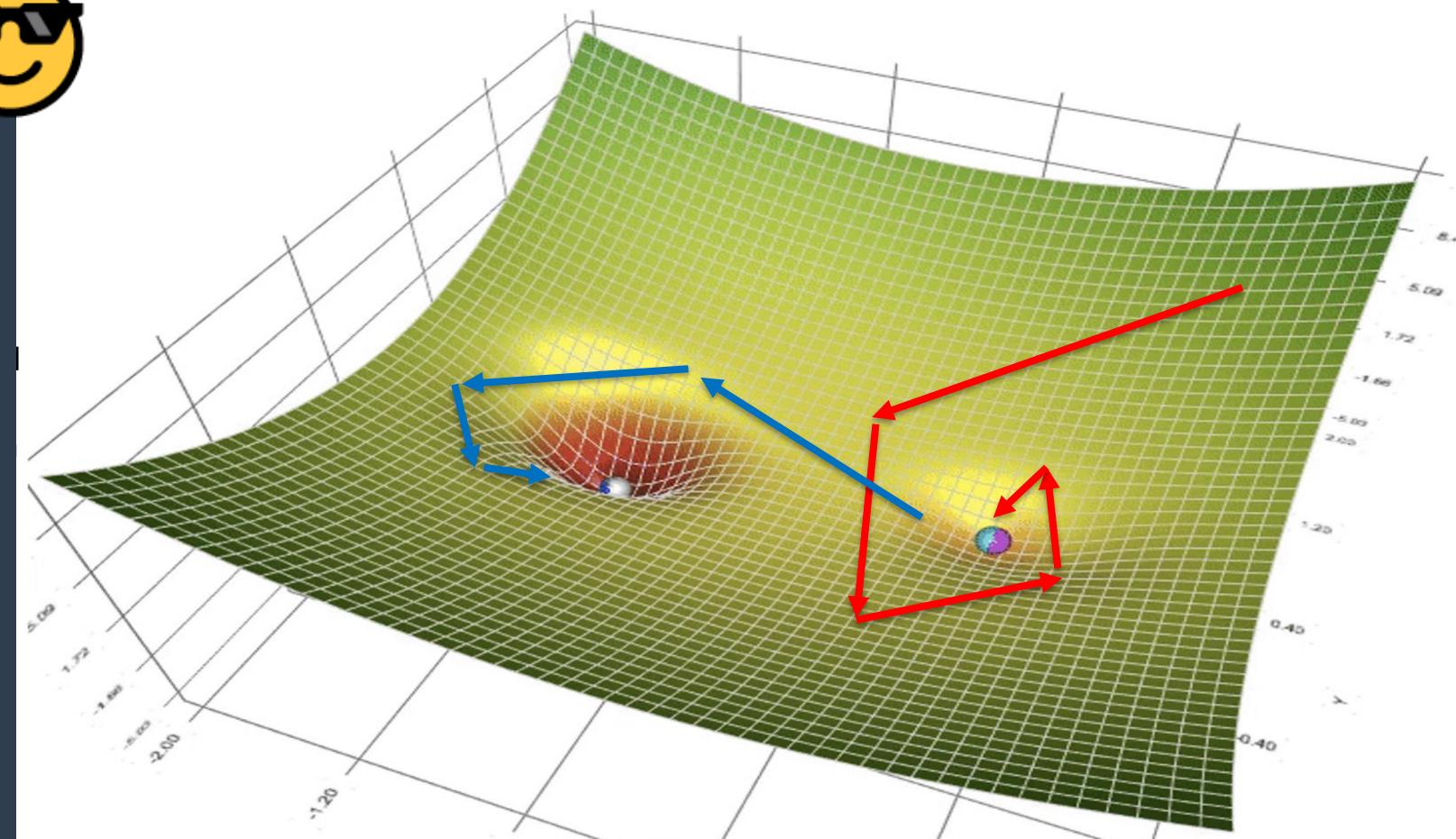
Learning Rate

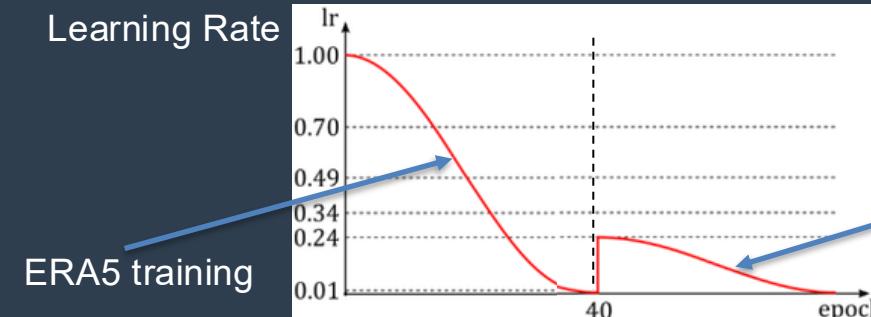
ERA5 training



Fine-tuning to operations

AIFSv1 candidate2 vs AIFSv0.2.1





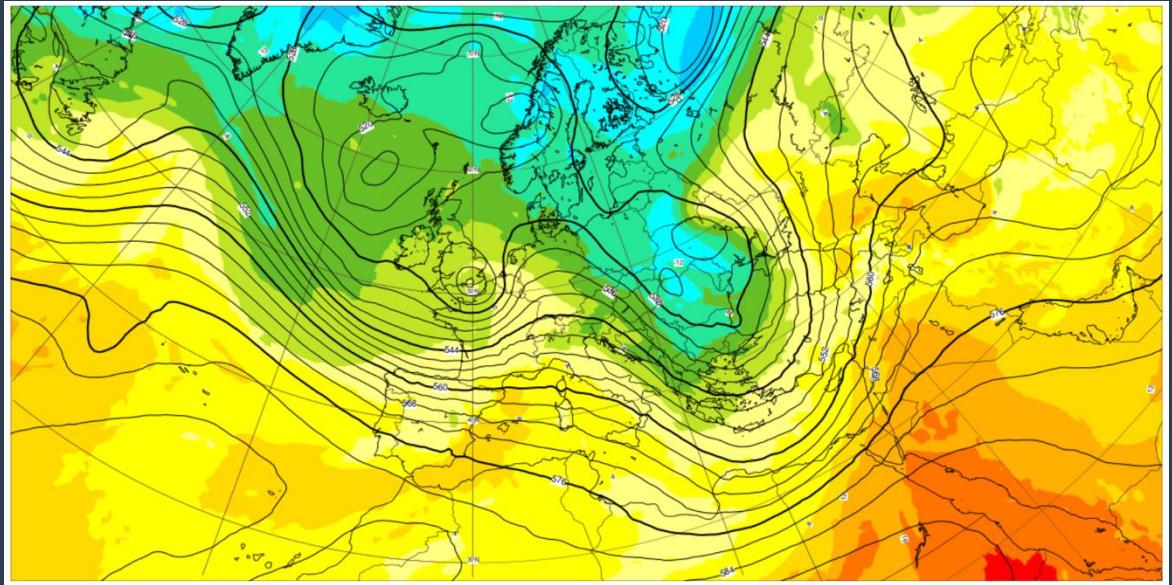
AIFSv1 candidate1 vs AIFSv0.2

AIFSv1 candidate2 vs AIFSv0.2.1

AIFSv1 candidate2 vs IFS

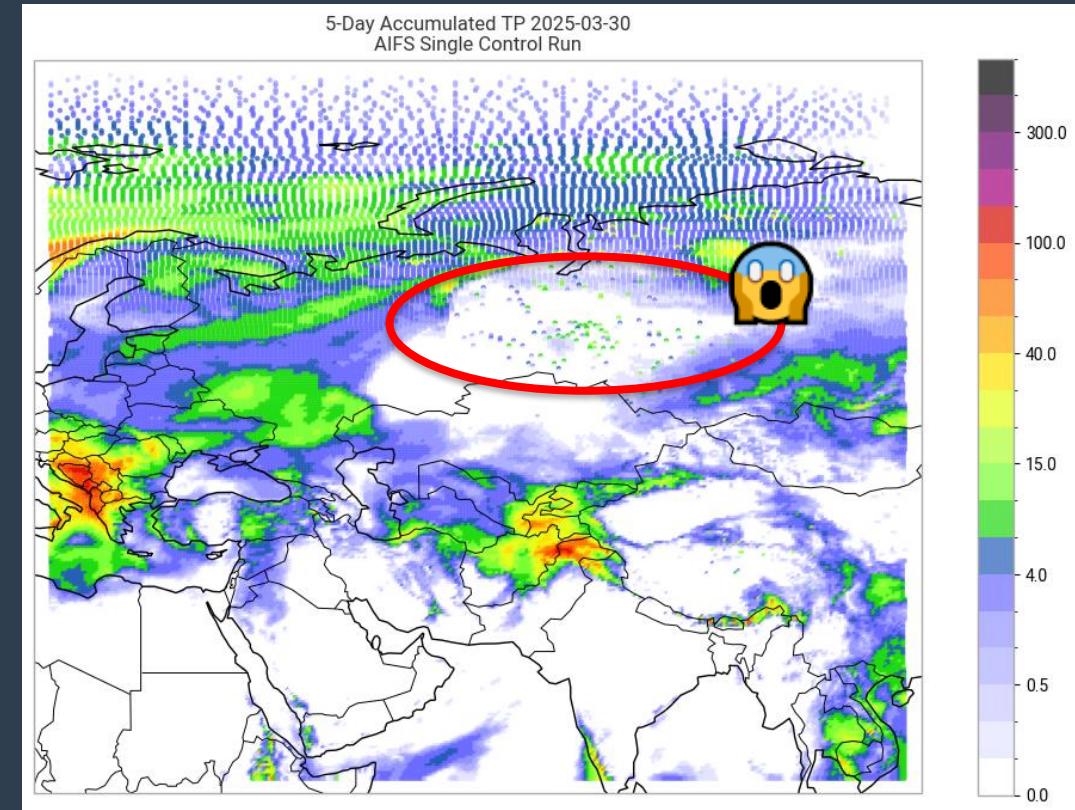
AIFS Single 1.0 – Into Operations

- AIFS-Single Operational as of Feb 2025
- AIFS-ENS Operational as of June 2025
- Outputs now available on:
<https://charts.ecmwf.int/>
- Initially very good performance!
- But then...



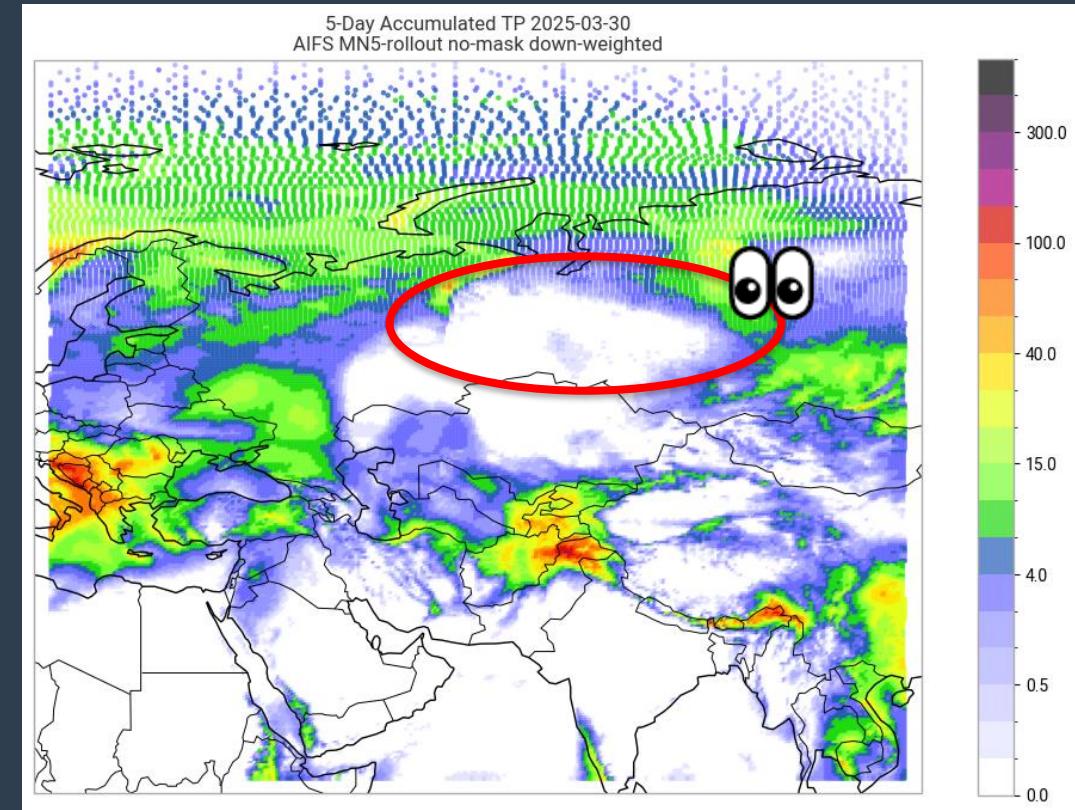
AIFS Single 1.0 – Rain Pox! 😢

- Blobs of unphysical rainfall in locations far away from real weather systems
- Causes:
 - Change in initial soil moisture conditions as new IFS cycle introduced at ECMWF
 - AIFS model had “learnt” an unphysical relationship between soil moisture and rainfall
- Fix:
 - Fix issues in IFS initial conditions from new cycle
 - Re-train AIFS with down-weighted loss parameter on soil moisture
 - Encourages model to learn dominant relationship:
 - Rainfall \rightarrow Soil Moisture ✓
 - Soil Moisture \rightarrow Rainfall ✗
- Find small improvements to scores too!



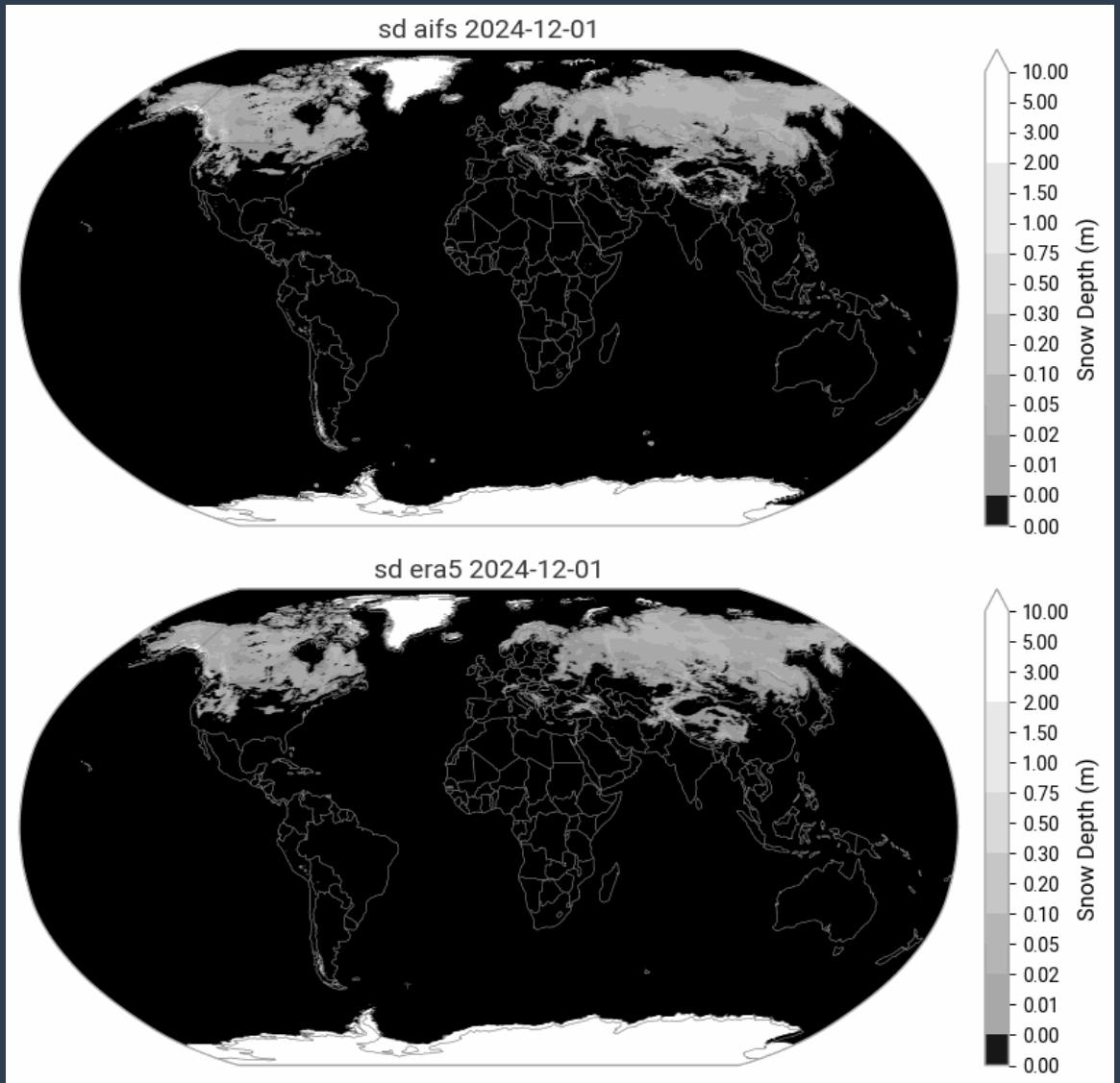
AIFS Single 1.0 – Rain Pox! 😢

- Blobs of unphysical rainfall in locations far away from real weather systems
- Causes:
 - Change in initial soil moisture conditions as new IFS cycle introduced at ECMWF
 - AIFS model had “learnt” an unphysical relationship between soil moisture and rainfall
- Fix:
 - Fix issues in IFS initial conditions from new cycle
 - Re-train AIFS with down-weighted loss parameter on soil moisture
 - Encourages model to learn dominant relationship:
 - Rainfall → Soil Moisture ✓
 - Soil Moisture → Rainfall ✗
- Find small improvements to scores too!

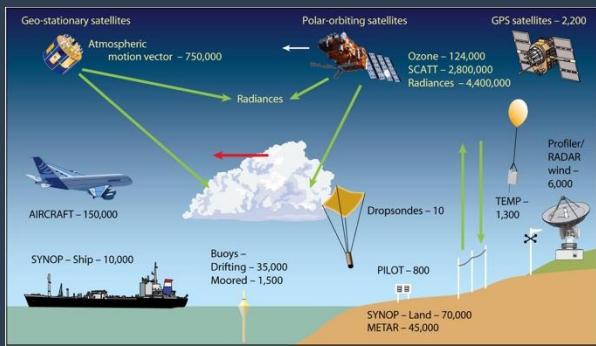
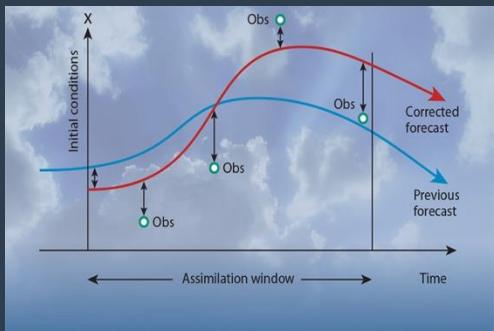
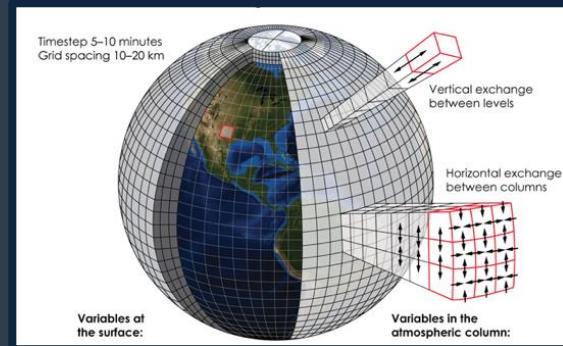
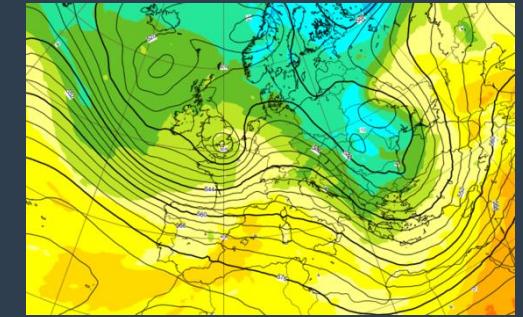
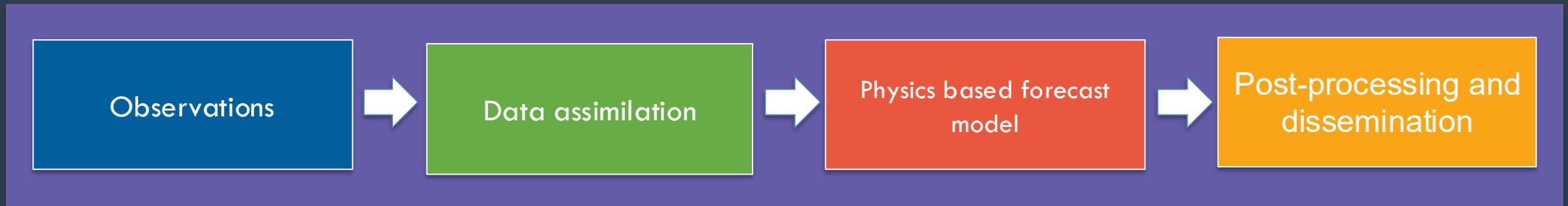


AIFS Single 1.0 – What's Next?

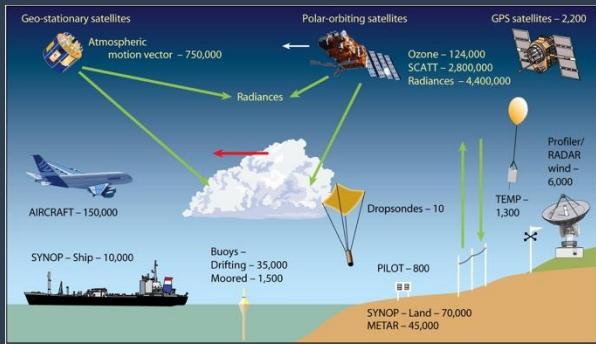
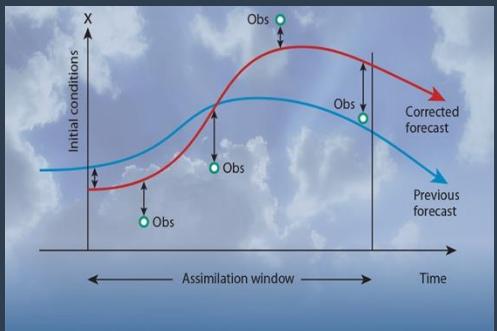
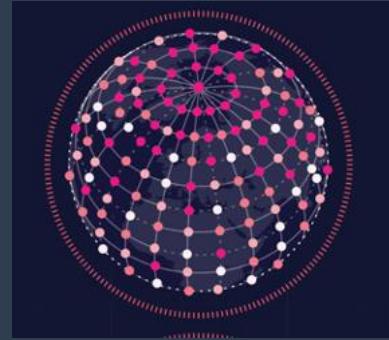
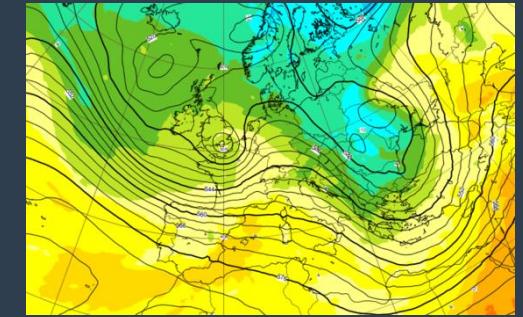
- Outputs now available on:
 - <https://charts.ecmwf.int/>
- All trained under open-source Anemoi repos:
 - github.com/ecmwf/anemoi-core
- Next Steps
 - More variables
 - Higher resolution
 - More collaboration (Anemoi)
 - Observations



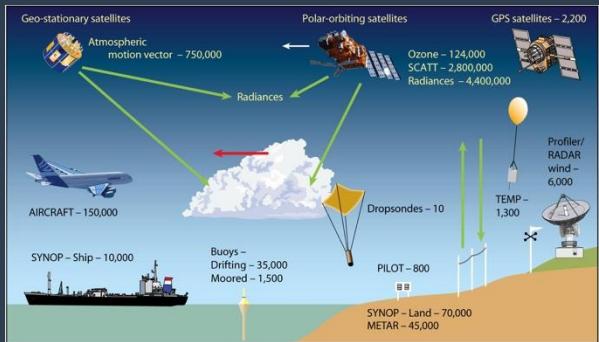
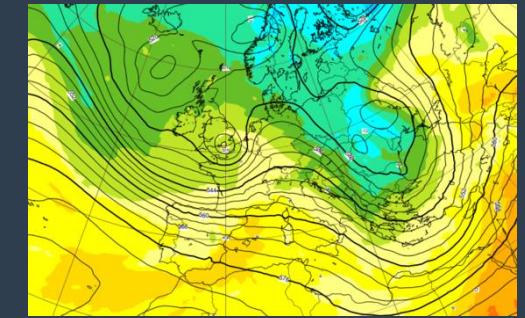
AI-Direct Observation Prediction (AI-DOP)



AI-Direct Observation Prediction (AI-DOP)

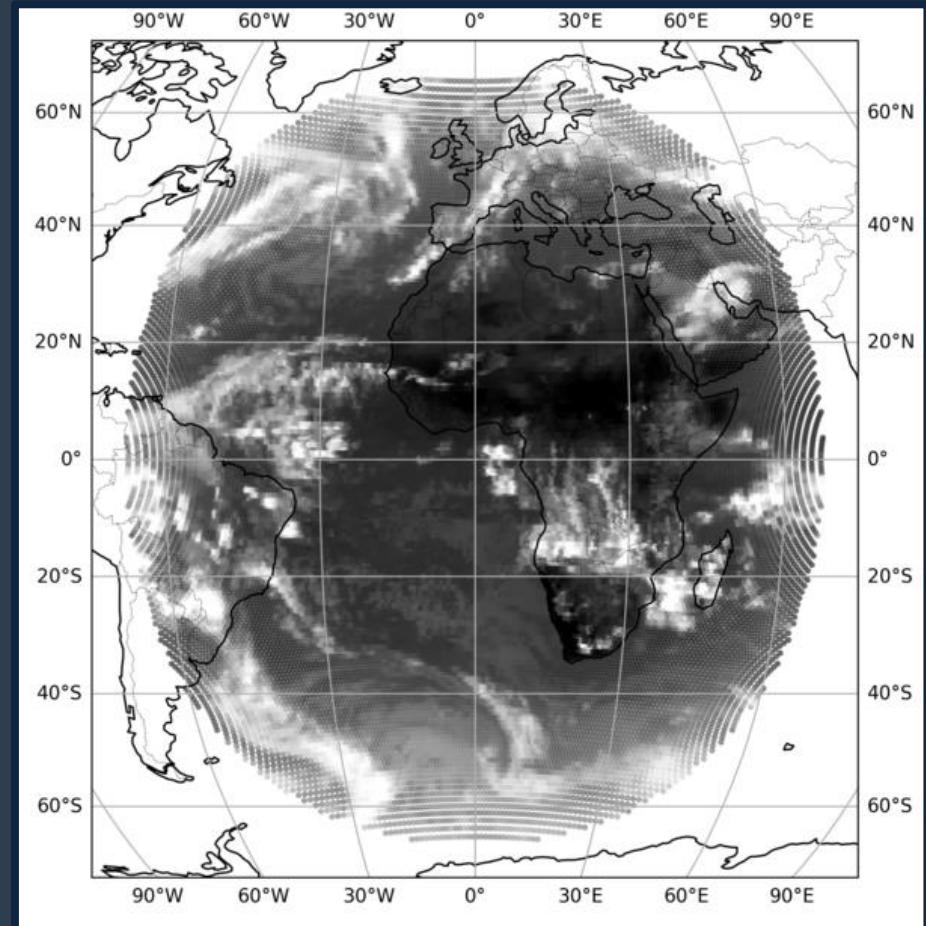


AI-Direct Observation Prediction (AI-DOP)

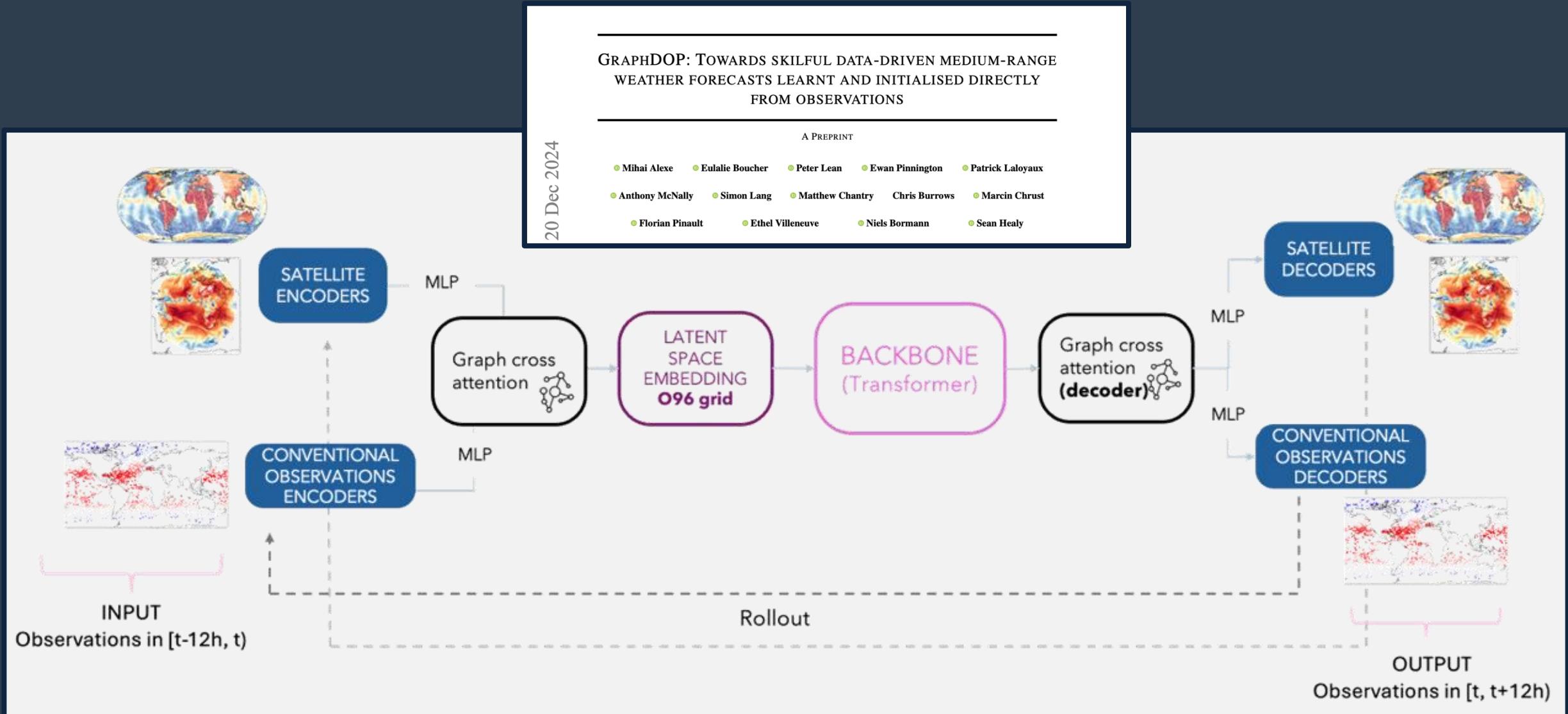


AI-Direct Observation Prediction (AI-DOP)

- We use historical observations to train a Neural Network (NN) to forecast future observations
- Include observations of the full Earth system (atmosphere, ocean, land) simultaneously
- Use all observations, without demanding a detailed physical model of the measurement
- Initialize model directly from observations:
 - Lower latency for forecasts
 - Faster access to warnings

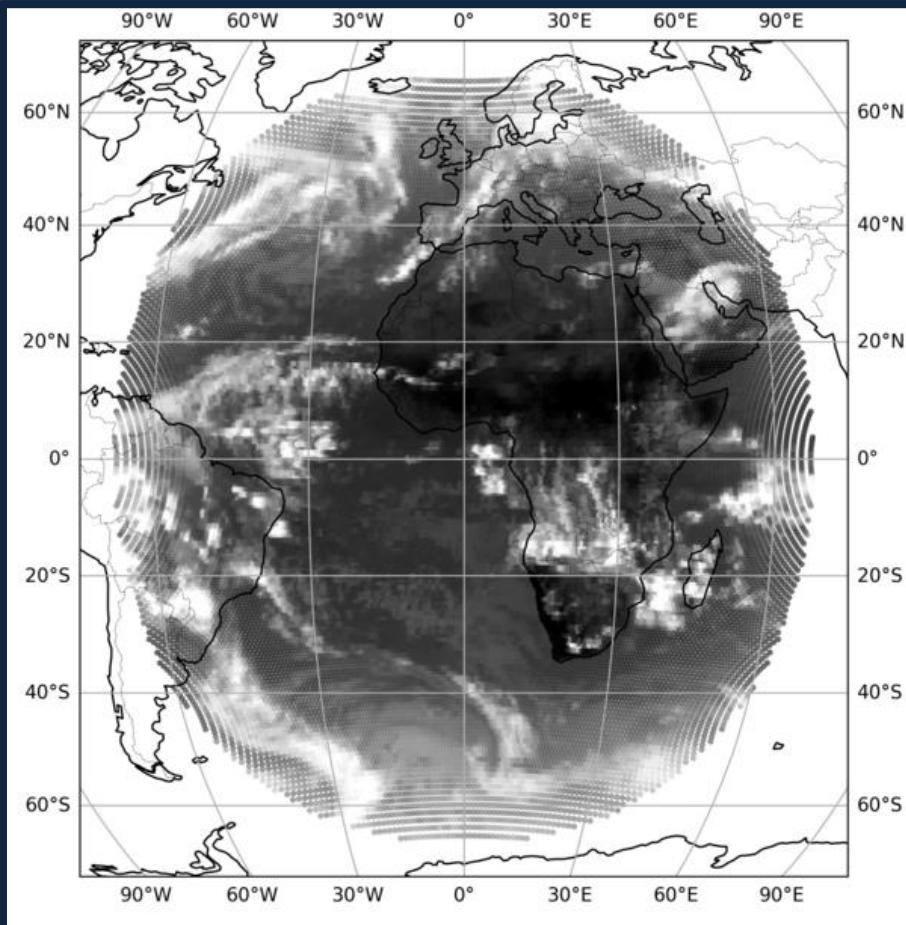


AI-Direct Observation Prediction (AI-DOP)

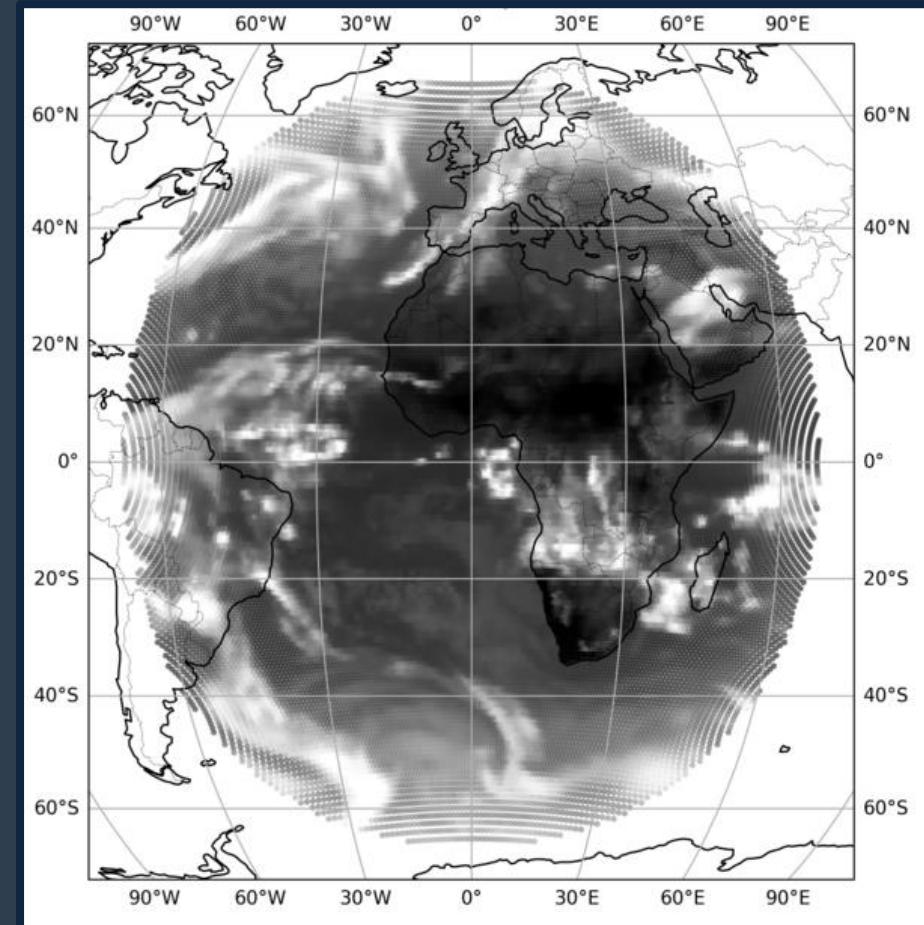


First medium-range forecasts directly from observations

Target Real Observations

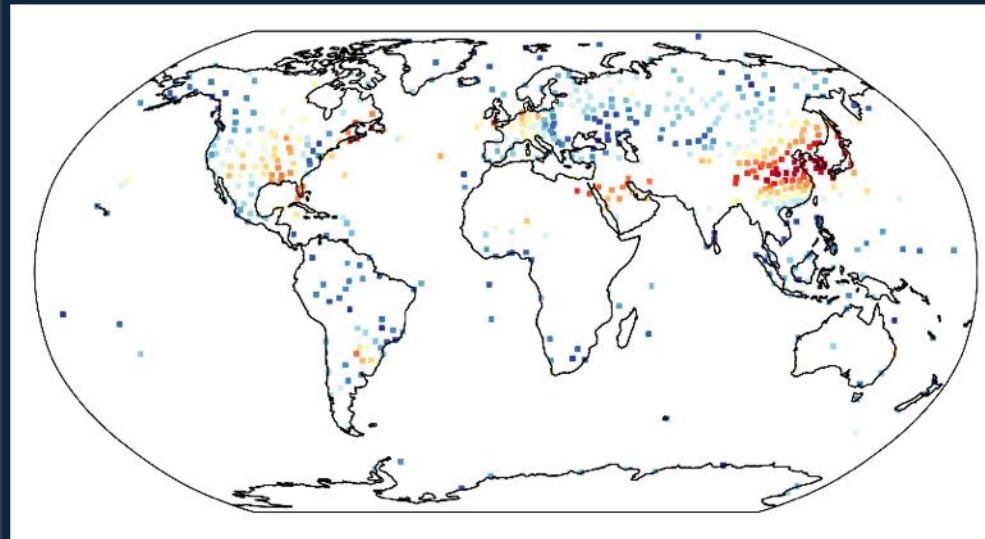


AI-DOP Model



Predict observations in locations which are not observed

Input Wind Observations

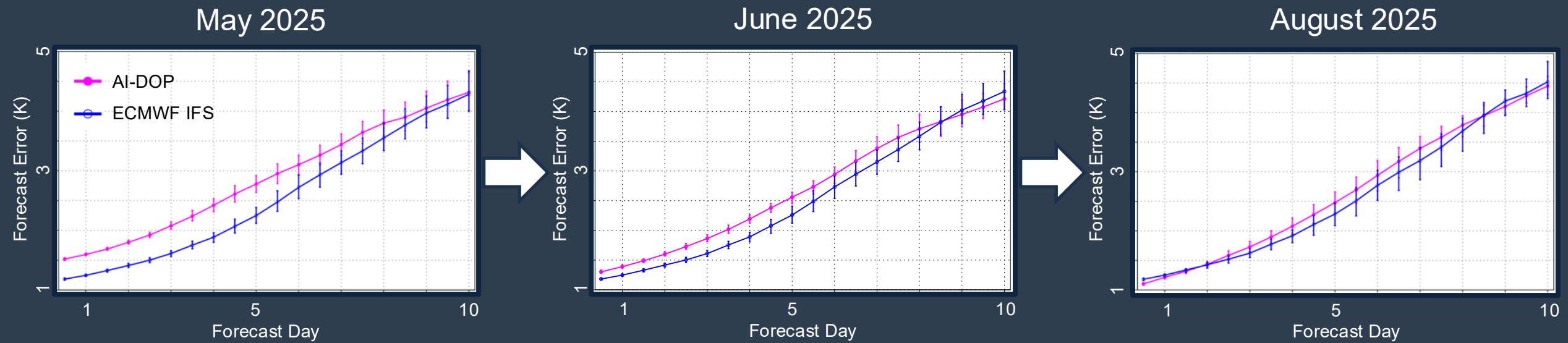


AI-DOP Predicted Wind



- Model fills gaps from traditional observations using learnt relationships to satellite observations
- Allows us to forecast physical variables (e.g., wind, temperature, pressure, humidity)

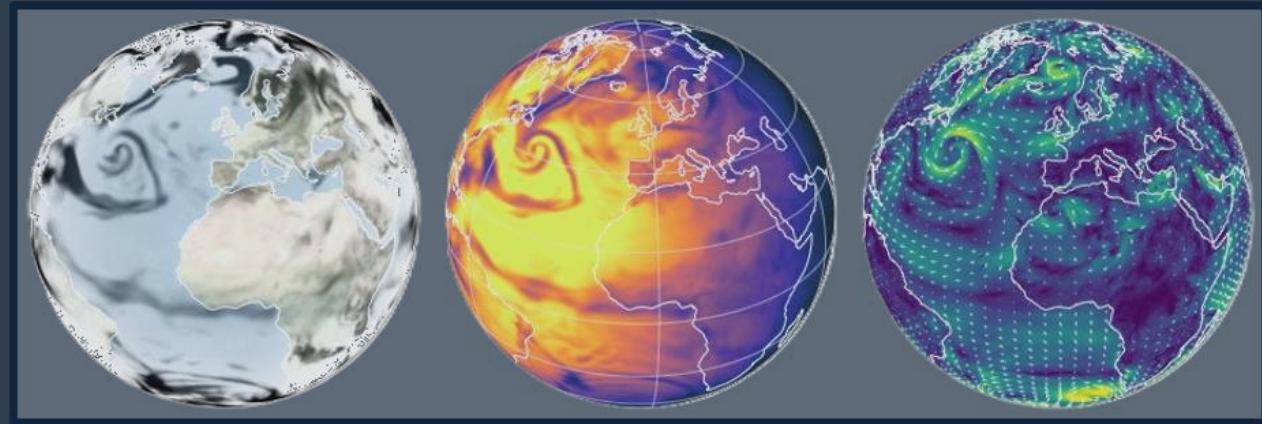
AI-DOP: How do forecast scores compare?



- Progress in skill of AI-DOP forecasts for successive model developments

Summary

- AI/ML becoming larger part of weather forecasting
- First “Data-Driven” forecast models now operational
 - AIFS Single
 - AIFS Ensemble
- Starting to expand to other Earth System Components... Land!
- Using observations directly could present some opportunities:
 - Exploit a wider range of innovative satellite sensor technologies
 - Potential to produce more accurate weather forecasts
 - Deliver forecasts and critical warnings faster than currently possible



AIFS Single Forecasts (cloud, solar, wind)