
© ECMWF February 12, 2026

Adding Land Variables to the AIFS and 

introduction to Direct Observation 

Prediction (AI-DOP)

Ewan Pinnington

European Centre for Medium-Range Weather Forecasts

ewan.pinnington@ecmwf.int



Overview

• Traditional Weather Forecasting Workflow:

– How are Weather Forecasts made with the traditional 

system

• Artificial Intelligence Forecasting System (AIFS):

– Where are we starting to use Machine Learning (ML) 

for weather forecasting?

– How have we added land variables into these new ML 

systems

• Direct Observation Prediction (AI-DOP):

– Making Weather Forecasts directly from observations 

using ML

• Summary
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How do we make Weather Forecasts

Observations Data assimilation
Physics based forecast 

model

Post-processing and 

dissemination



ERA5: blended observations and physics for over 50 years

• Run Data Assimilation system with available 

historical observations to get best estimates to the 

state of the atmosphere

• Available 1940 to present

• ~ 0.25 degree resolution

• Hourly estimates to state of the atmosphere 

combining observations and model physics

• Very large dataset! < 5 Petabytes

• ERA6 entering production soon!
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Step-back: Rise of Machine Learning…

• Machine Learning not a “new” idea

• Combination of access to ever increasing data volume 

and progress in compute (GPUs) makes its application 

possible and much more effective now

• Increased compute power (and available data) makes 

machine learning possible today

– Explosion in data volumes following digitisation

– “Domain specific compute architectures” e.g. GPUs

• Data produced by ECMWF presents significant 

opportunity for training a “Data-Driven” model
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Frank Rosenblatt programming his Perceptron, 1970s



Step-back: Rise of Machine Learning…
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Keisler - GraphNN

1°, competitive 

with GFS

NVIDIA –

FourCastNet

Fourier+ , 0.25°

O(104) faster & 

more energy 

efficient than IFS

Feb 2022

Full medium-range NWP

Nov 2022

Tropical cyclones

Dec 2022

Extensive predictions

Huawei –

PanguWeather

0.25° hourly 

product

“More 

accurate 

tracks” than 

the IFS.

Deepmind –

GraphCast

0.25° 6-hour

Many variables 

and pressure 

levels with 

comparable skill 

to IFS.

Jan 2023

Global & Limited Area

Microsoft –

ClimaX

Forecasting 

various lead-

times at various 

resolutions, both 

globally and 

regionally

Apr 2023

7-day+ scores improve

FengWu –

China academia + 

Shanghai Met 

Bureau

0.25° 6-hour product

Improves on 

GraphCast for 

longer leadtimes

(still deterministic) 

ECMWF staff 
~500km ERA5 to 

predict future z500.

Similar work from 

Rasp and Weyn.

Spherical harmonics

Jun 2023

Diffusion modelling

NVIDIA – SFNO
0.25° 6-hour product

Extension of 

FourCastNet to 

Spherical 

harmonics, improved 

stability

Alibaba –

SwinRDM
0.25° 6-hour 

product

Sharp spatial 

features

Defining the 

dataset, split, 
headline fields 

and metrics

2020 WeatherBench

And so on…

AIFS

FuXi

AtmoRep

FuXi-extreme

NeuralGCM

GenCast

…

impossible to 

keep this 

figure up!



AIFS: Data-driven Weather Forecasting System
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Observations Data assimilation
Physics based forecast 

model

Post-processing and 

dissemination



AIFS: Data-driven Weather Forecasting System
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Observations Data assimilation
“Data-driven” forecasting 

model

Post-processing and 

dissemination



AIFS: Data-driven Weather Forecasting System
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AIFS MODEL

processorencoder decoder

Graph attention Graph attention

Transformer blocks and windowed 

attention (attention across regional bands).

On a coarser grid than input grid

Implemented in

Input

Atmospheric state:

X(t), X(t-6h)

Output

Prediction:

X(t+6h)

Lang et al. 2024a

https://arxiv.org/abs/2406.01465

https://arxiv.org/abs/2406.01465
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Once the model is trained, we can generate predictions stepping e.g. 6h from analysis to analysis

6h 6h

The forecast is then autoregressively stepping 6h into the future xn = f(xn-1) …

INFERENCE

t+6 t+12 t+240t+18



AIFS: Forecast Performance
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3-day forecast

5-day forecast

7-day forecast

10-day forecast

AIFS

IFS



AIFS: Case Study

121212

AIFS

IFS

DAY 10 DAY 8 DAY 6 DAY 4

Forecast Lead Time

Best estimate 



AIFS: Efficiency and Cost 

Gain in time and energy 

ERA5:

15 billion (one off)

ECMWF HRES:

180 000

per forecast

AI Model: 

0.3

per forecast

Hersbach, H et al. (2020)
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AIFS Single 1.0 – Adding Land and Energy Sector Variables

• As part of first operations release 

new variables included in AIFS 1.0 

model

• New variables added to AIFS 1.0

– Prognostics:

▪ Soil moisture (layer 1 + 2) 

▪ Soil temperature (layer 1 + 2) 

– Diagnostics:

▪ Cloud covers (tcc, lcc, mcc, hcc) 

▪ Surface radiations (strd, ssrd) 

▪ 100m winds (100u, 100v) 

▪ Snow fall (sf) 

▪ Runoff (ro) 
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AIFS Single 1.0 – Development Procedure

• Build new datasets through anemoi-datasets 
github.com/ecmwf/anemoi-datasets

– New variables, new years of data, etc.

– Now training on 

▪ ERA5: 1979-2022 (1-step, 6-hour forecasts)

▪ IFS-Operations: 2016-2022 

(fine-tuning/rollout, 6 to 72-hour forecasts )

• Decide which features to include in release from 

anemoi-core github.com/ecmwf/anemoi-core

• Train example models at o96 (~1 degree) resolution 

with varying configurations

• For most promising models train versions at n320 (~30 

km) resolution

• Perform more rigorous validation and decide on final 

candidate

http://github.com/ecmwf/anemoi-datasets
http://github.com/ecmwf/anemoi-datasets
http://github.com/ecmwf/anemoi-datasets
http://github.com/ecmwf/anemoi-core
http://github.com/ecmwf/anemoi-core
http://github.com/ecmwf/anemoi-core


ERA5 training

Fine-tuning to operations

AIFSv1 candidate1 vs AIFSv0.2.1

Learning Rate



AIFSv1 candidate2 vs AIFSv0.2.1

ERA5 training

Fine-tuning to operations

Learning Rate



AIFSv1 candidate1 vs AIFSv0.2.1 AIFSv1 candidate2 vs IFS

ERA5 training

Fine-tuning to operations

AIFSv1 candidate2 vs AIFSv0.2.1

Learning Rate



AIFS Single 1.0 – Into Operations

• AIFS-Single Operational as of Feb 2025 

• AIFS-ENS Operational as of June 2025

• Outputs now available on: 

https://charts.ecmwf.int/

• Initially very good performance!

• But then…
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AIFS Single 1.0 – Rain Pox! 
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• Blobs of unphysical rainfall in locations far away from 

real weather systems

• Causes:

– Change in initial soil moisture conditions as new IFS 

cycle introduced at ECMWF

– AIFS model had “learnt” an unphysical relationship 

between soil moisture and rainfall

• Fix:

– Fix issues in IFS initial conditions from new cycle

– Re-train AIFS with down-weighted loss parameter on 

soil moisture

– Encourages model to learn dominant relationship:

• Rainfall Soil Moisture 

• Soil Moisture Rainfall 

• Find small improvements to scores too!



AIFS Single 1.0 – Rain Pox! 

• Blobs of unphysical rainfall in locations far away from 

real weather systems

• Causes:

– Change in initial soil moisture conditions as new IFS 

cycle introduced at ECMWF

– AIFS model had “learnt” an unphysical relationship 

between soil moisture and rainfall

• Fix:

– Fix issues in IFS initial conditions from new cycle

– Re-train AIFS with down-weighted loss parameter on 

soil moisture

– Encourages model to learn dominant relationship:

• Rainfall Soil Moisture 

• Soil Moisture Rainfall 

• Find small improvements to scores too!

22EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS



AIFS Single 1.0 – What’s Next?

• Outputs now available on: 

– https://charts.ecmwf.int/

• All trained under open-source Anemoi repos:

– github.com/ecmwf/anemoi-core

• Next Steps

– More variables

– Higher resolution

– More collaboration (Anemoi)

– Observations
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http://github.com/ecmwf/anemoi-core
http://github.com/ecmwf/anemoi-core
http://github.com/ecmwf/anemoi-core
http://github.com/ecmwf/anemoi-core


AI-Direct Observation Prediction (AI-DOP)
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Observations Data assimilation
Physics based forecast 

model

Post-processing and 

dissemination



AI-Direct Observation Prediction (AI-DOP)
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Observations Data assimilation
“Data-driven” forecasting 

model

Post-processing and 

dissemination



AI-Direct Observation Prediction (AI-DOP)
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Observations
“Data-driven” forecasting 

model

Post-processing and 

dissemination



AI-Direct Observation Prediction (AI-DOP)

• We use historical observations to train a Neural 

Network (NN) to forecast future observations

• Include observations of the full Earth system 

(atmosphere, ocean, land) simultaneously

• Use all observations, without  demanding a detailed 

physical model of the measurement 

• Initialize model directly from observations:

– Lower latency for forecasts

– Faster access to warnings
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AI-Direct Observation Prediction (AI-DOP)
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First medium-range forecasts directly from observations
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Target Real Observations AI-DOP Model



Predict observations in locations which are not observed
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Input Wind Observations AI-DOP Predicted Wind

• Model fills gaps from traditional observations using learnt 

relationships to satellite observations

• Allows us to forecast physical variables (e.g., wind, temperature, 

pressure, humidity)



AI-DOP: How do forecast scores compare?
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• Progress in skill of AI-DOP forecasts for successive model developments

AI-DOP

ECMWF IFS



Summary

• AI/ML becoming larger part of weather forecasting

• First “Data-Driven” forecast models now operational

– AIFS Single

– AIFS Ensemble

• Starting to expand to other Earth System 

Components… Land!

• Using observations directly could present some 

opportunities:

– Exploit a wider range of innovative satellite sensor 

technologies

– Potential to produce more accurate weather forecasts

– Deliver forecasts and critical warnings faster than 

currently possible

32EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

AIFS Single Forecasts (cloud, solar, wind)
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