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Overview

Traditional Weather Forecasting Workflow:

— How are Weather Forecasts made with the traditional
system

Artificial Intelligence Forecasting System (AIFS):

— Where are we starting to use Machine Learning (ML)
for weather forecasting?

— How have we added land variables into these new ML
systems

Direct Observation Prediction (Al-DOP):

— Making Weather Forecasts directly from observations
using ML

Summary
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How do we make Weather Forecasts
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ERAS: blended observations and physics for over 50 years

* Run Data Assimilation system with available
historical observations to get best estimates to the
State Of the atmosphere Global observing system ECMWF model

 Available 1940 to present
« ~ 0.25 degree resolution

* Hourly estimates to state of the atmosphere
combining observations and model physics

* Very large dataset! < 5 Petabytes

« ERAG entering production soon!

N
Sy
) -
>

- —

- e et £

gy o gy

v v v v ' g v v v v v v . 0 v ' v . v g
1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

Ny ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS 4



Step-back: Rise of Machine Learning...

* Machine Learning not a “new” idea

« Combination of access to ever increasing data volume
and progress in compute (GPUs) makes its application
possible and much more effective now e
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* Increased compute power (and available data) makes LA o
machine learning possible today

e

— Explosion in data volumes following digitisation

— “Domain specific compute architectures” e.g. GPUs
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« Data produced by ECMWEF presents significant
opportunity for training a “Data-Driven” model

Frank Rosenblatt programming his Perceptron, 1970s
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Step-back: Rise of Machine Learning...

Defining the
dataset, split,
headline fields
and metrics

ECMWEF staff
~500km_ERAS5 to
predict future z500.
Similar work from
Rasp and Weyn.
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accurate resolutions, both Spherical
tracks” than globally and harmonics, improved
the IFS. regionally stability
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Tropical cyclones Global & Limited Area
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Full medium-range NWP Extensive predictions  7-day+ scores improve
Keisler - GraphNN Deepmind — FengWu — Alibaba -
1°, competitive GraphCast China academia + SwinRDM
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impossible to
keep this
figure up!



AlIFS: Data-driven Weather Forecasting System

Geo-stationary satellites Polar-orbiting satellites GPS satellites - 2,200
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Variables in the
atmospheric column:




AlIFS: Data-driven Weather Forecasting System
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Lang et al. 2024a
AlFS: Data-driven Weather Forecasting System

Input Output
Atmospheric state: Prediction:

SRAIL A O AIFS MODEL

S e e e e v R P 20

Graph attention

Transformer blocks and windowed _
attention (attention across regional bands). Implemented in
On a coarser grid than input grid
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https://arxiv.org/abs/2406.01465

Once the model is trained, we can generate predictions stepping e.g. 6h from analysis to analysis

The forecast is then autoregressively stepping 6h into the future x, = f(x, ) ...

e
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ECMWEF IFS and AIFS
ACC 500hPa geopotential height
(12-month running mean)

3-day forecast

5-day forecast

7-day forecast

10-day forecast
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AlFS: Case Study

Forecast Lead Time
DAY 10 DAY 8 DJANES DAY 4

AIFS 2025-01-21 (+240h) AIFS 2025-01-21 (+192h) AIFS 2025-01-21 (+144h) AIFS 2025-01-21 (+96h)

Best estimate

IFS Short-Range Forecast
2025-01-21

0.5 1
24-hour Accumulated Snow Fall (mm)

& ECMWF



AIFS: Efficiency and Cost

Gain in time and energy

& ECMWF

ERAS:
15 billion (one off)

Hersbach, H et al. (2020)

ECMWF HRES:
180 000
per forecast

Al Model:
0.3

per forecast




As part of first operations release
new variables included in AIFS 1.0
model

New variables added to AIFS 1.0

Prognostics:
Soil moisture (layer 1 + 2)
Soil temperature (layer 1 + 2) §
Diagnostics:
Cloud covers (tcc, Icc, mcc, hce) &
Surface radiations (strd, ssrd) #
100m winds (100u, 100v) /-
Snow fall (sf) #*
Runoff (ro) ™
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Soil temperature level 1 AIFS FC
2023-06-01T12:00

Volumetric soil water layer 1 AIFS FC
2023-06-01T12:00

010

0.05
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AIFS Single 1.0 — Adding Land and Energy Sector Variables

As part of first operations release
new variables included in AIFS 1.0
model

New variables added to AIFS 1.0

Prognostics:
Soil moisture (layer 1 + 2)
Soil temperature (layer 1 + 2) §
Diagnostics:
Cloud covers (tcc, Icc, mcc, hce) &
Surface radiations (strd, ssrd) #
100m winds (100u, 100v) /-
Snow fall (sf) #*

Runoff (ro) Surface Solar Radiation Cloud Cover

o~
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AIFS Single 1.0 — Development Procedure

Build new datasets through anemoi-datasets
github.com/ecmwf/anemoi-datasets

New variables, new years of data, etc.

Surface short-wave (solar) radiation downwards AIFS FC
2023-06- I"llTlé? 00

Now training on

. 1 -
ERAS5: 1979-2022 (1-step, 6-hour forecasts) ¥ o R

IFS-Operations: 2016-2022
(fine-tuning/rollout, 6 to 72-hour forecasts )

Decide which features to include in release from
anemoi-core qgithub.com/ecmwf/anemoi-core

Train example models at 096 (~1 degree) resolution _
with varying configurations B0 20w W

For most promising models train versions at n320 (~30
km) resolution

Perform more rigorous validation and decide on final
candidate
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http://github.com/ecmwf/anemoi-datasets
http://github.com/ecmwf/anemoi-datasets
http://github.com/ecmwf/anemoi-datasets
http://github.com/ecmwf/anemoi-core
http://github.com/ecmwf/anemoi-core
http://github.com/ecmwf/anemoi-core
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AlIFSv1 candidate1 vs AIFSv(0.2.1

Learning Rate

ERAS training
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AIFSv1 candidate2 vs AIFSv(0.2.1

Fine-tuning to operations

AIFSv1 candidate? vs IFS
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AIFS Single 1.0 — Into Operations

* AIFS-Single Operational as of Feb 2025
» AIFS-ENS Operational as of June 2025

» QOutputs now available on:
https://charts.ecmwf.int/

* Initially very good performance!

e But then...

e
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AIFS Single 1.0 — Rain Pox! @

« Blobs of unphysical rainfall in locations far away from
real weather systems

« (Causes:

— Change in initial soil moisture conditions as new IFS
cycle introduced at ECMWF

— AIFS model had “learnt” an unphysical relationship
between soil moisture and rainfall

* Fix:
— Fix issues in IFS initial conditions from new cycle

— Re-train AIFS with down-weighted loss parameter on
soil moisture

— Encourages model to learn dominant relationship:
 Rainfall = Soil Moisture ¥

 Soil Moisture = Rainfall

* Find small improvements to scores too!
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AIFS Single 1.0 — Rain Pox! @

« Blobs of unphysical rainfall in locations far away from
real weather systems AlES MNG rolout sk dowghtad

« (Causes:

— Change in initial soil moisture conditions as new IFS haecczs i\ e s "‘}‘,;.‘
cycle introduced at ECMWF 7 S T i 33 it

— AIFS model had “learnt” an unphysical relationship
between soil moisture and rainfall

— Fix issues in IFS initial conditions from new cycle

— Re-train AIFS with down-weighted loss parameter on
soil moisture

— Encourages model to learn dominant relationship:

« Rainfall = Soil Moisture ¥

 Soil Moisture = Rainfall

* Find small improvements to scores too!

 am
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AIFS Single 1.0 — What's Next?

sd aifs 2024-12-01

;rs'r,rw-

» Outputs now available on:

« All trained under open-source Anemoi repos:

—_
£
=
=
=%
@
[
=
[=]
c
w

* Next Steps
— More variables
— Higher resolution
sd era5 2024-12-01

— More collaboration (Anemoi)

— Observations

Snow Depth (m)

o~
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Al-Direct Observation Prediction (AlI-DOP)

Geo-stationary satellites Polar-orbiting satelltes GPS satelltes - 2,200
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<«—— Assimilation window ———>»
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atmospheric column:

SYNOP - Land - 70,000
the surface:
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Observations

e
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Al-Direct Observation Prediction (AlI-DOP)
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Al-Direct Observation Prediction (AlI-DOP)

Geo-stationary satellites Polar-orbiting satellites GPS satellites - 2,200

/&g Amospheric ".‘* ?5% P
Y motion vector 750,000 il Ozone - 124,000 oy . S
\ “ e, S0 / . \
Radiances - 4,400,000 > :
Radiances ~ ( .

AIRCRAFT - 150,000 ‘\ “ / Dropsondes - 10
\\| /

Al /

\

PILOT - 800

SYNOP - Land - 70,000
METAR - 45,000

Observations

e
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Al-Direct Observation Prediction (AlI-DOP)

 We use historical observations to train a Neural
Network (NN) to forecast future observations

* Include observations of the full Earth system
(atmosphere, ocean, land) simultaneously

» Use all observations, without demanding a detailed
physical model of the measurement

* Initialize model directly from observations:
— Lower latency for forecasts

— Faster access to warnings
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Al-Direct Observation Prediction (AlI-DOP)

GRAPHDOP: TOWARDS SKILFUL DATA-DRIVEN MEDIUM-RANGE
WEATHER FORECASTS LEARNT AND INITIALISED DIRECTLY
FROM OBSERVATIONS

A PREPRINT

Mihai Alexe Eulalie Boucher Peter Lean Ewan Pinnington Patrick Laloyaux

Anthony McNally Simon Lang Matthew Chantry Chris Burrows Marcin Chrust

20 Dec 2024

Florian Pinault Ethel Villeneuve Niels Bormann Sean Healy

SATELLITE
SATELLITE DECODERS
ENCODERS

LATENT
Graph cross SPACE

PALINDLUN attention
. EMBEDDING ' )iﬁ,
attention @, 096 orid | | | (decoder
CONVENTIONAL

CONVENTIONAL OBSERVATIONS
OBSERVATIONS DECODERS
ENCODERS

Graph cross

INPUT
Observations in [t-12h, t)

Rollout

OUTPUT
Observations in [t, t+12h)
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First medium-range forecasts directly from observations

Target Real Observations
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Al-DOP Model
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Predict observations in locations which are not observed

Al-DOP Predicted Wind

Input Wind Observations

* Modelfills gaps from traditional observations using learnt
relationships to satellite observations

« Allows us to forecast physical variables (e.g., wind, temperature,
pressure, humidity)

 am
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Forecast Error (K)

May 2025 June 2025

Forecast Day

Forecast Day

* Progress in skill of AI-DOP forecasts for successive model developments
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Forecast Error (K)

5

3

1

August 2025

Forecast Day
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Summary

» Al/ML becoming larger part of weather forecasting

* First “Data-Driven” forecast models now operational
— AIFS Single
— AIFS Ensemble

« Starting to expand to other Earth System
Components... Land!

» Using observations directly could present some
opportunities:

— Exploit a wider range of innovative satellite sensor
technologies

AIFS Single Forecasts (cloud, solar, wind)

— Potential to produce more accurate weather forecasts

— Deliver forecasts and critical warnings faster than
currently possible

e
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