

2025 ML4LM Webinar Series

EarthMind S2S: A coupled ocean-atmosphere-land global AI model for subseasonal to seasonal forecasts

Manmeet Singh
manmeet.singh@utexas.edu

The quiet revolution of numerical weather prediction

Peter Bauer¹, Alan Thorpe¹ & Gilbert Brunet²

Advances in numerical weather prediction represent a quiet revolution because they have resulted from a steady accumulation of scientific knowledge and technological advances over many years that, with only a few exceptions, have not been associated with the aura of fundamental physics breakthroughs. Nonetheless, the impact of numerical weather prediction is among the greatest of any area of physical science. As a computational problem, global weather prediction is comparable to the simulation of the human brain and of the evolution of the early Universe, and it is performed every day at major operational centres across the world.

At the turn of the twentieth century, Abbe¹ and Bjerknes² proposed that the laws of physics could be used to forecast the weather; they recognized that predicting the state of the atmosphere could be treated as an initial value problem of mathematical physics, wherein future weather is determined by integrating the governing partial differential equations, starting from the observed current weather. This proposition, even with the most optimistic interpretation of Newtonian determinism, is all the more audacious given that, at that time, there were few routine observations of the state of the atmosphere, no computers, and little understanding of whether the weather possesses any significant degree of predictability. But today, more than 100 years later, this prediction translates into solving daily a system of nonlinear

use of observational information from satellite data providing global coverage.

More visible to society, however, are extreme events. The unusual path and intensification of hurricane Sandy in October 2012 was predicted 8 days ahead, the 2010 Russian heat-wave and the 2013 US cold spell were forecast with 1–2 weeks lead time, and tropical sea surface temperature variability following the El Niño/Southern Oscillation phenomenon can be predicted 3–4 months ahead. Weather and climate prediction skill are intimately linked, because accurate climate prediction needs a good representation of weather phenomena and their statistics, as the underlying physical laws apply to all prediction time ranges.

This Review outlines the fundamental scientific basis of numerical

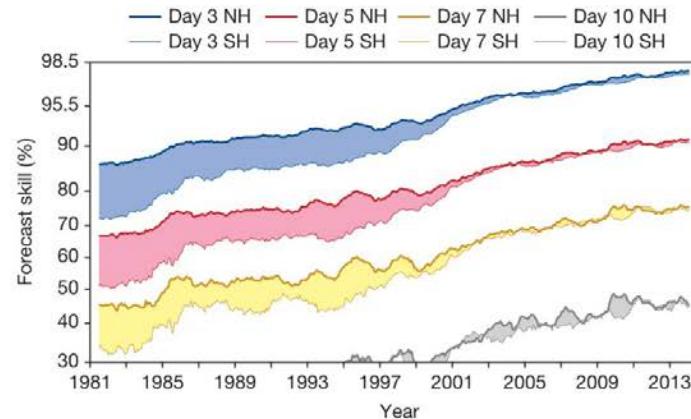
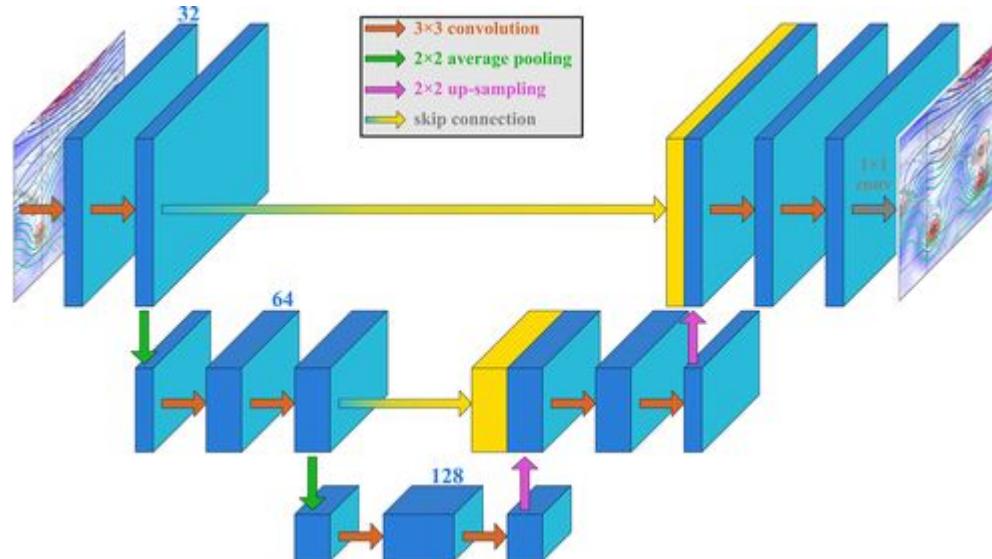


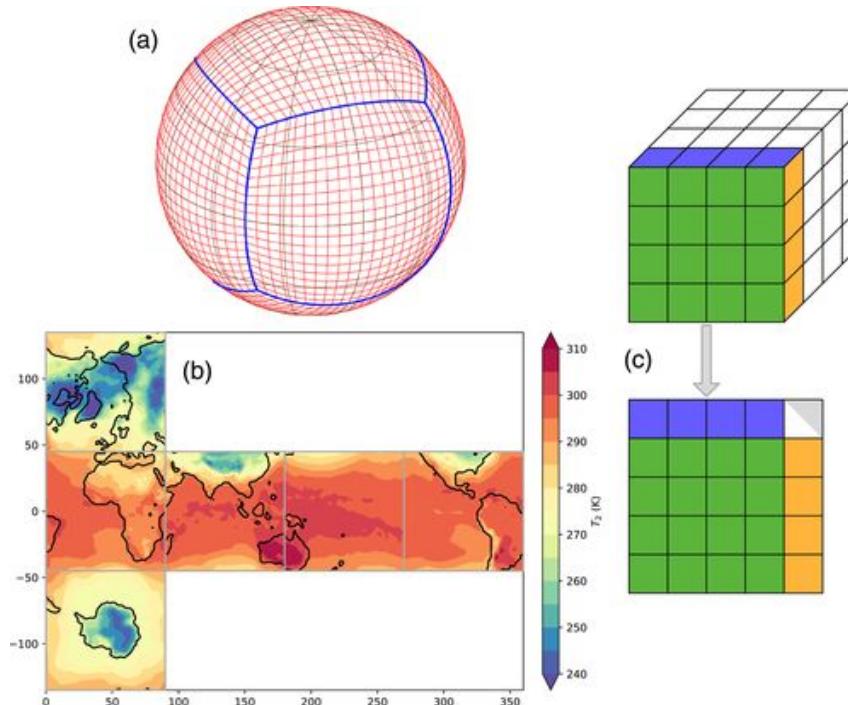
Figure 1 | A measure of forecast skill at three-, five-, seven- and ten-day ranges, computed over the extra-tropical northern and southern hemispheres. Forecast skill is the correlation between the forecasts and the verifying analysis of the height of the 500-hPa level, expressed as the anomaly with respect to the climatological height. Values greater than 60% indicate useful forecasts, while those greater than 80% represent a high degree of accuracy. The convergence of the curves for Northern Hemisphere (NH) and Southern Hemisphere (SH) after 1999 indicates the breakthrough in exploiting satellite data through the use of variational data¹⁰⁰.

Deep Learning for Weather Prediction (DLWP)



Weyn, J.A., Durran, D.R. and Caruana, R., 2019. Can machines learn to predict weather? Using deep learning to predict gridded 500-hPa geopotential height from historical weather data. *Journal of Advances in Modeling Earth Systems*, 11(8), pp.2680-2693.

DLWP Cubed Sphere



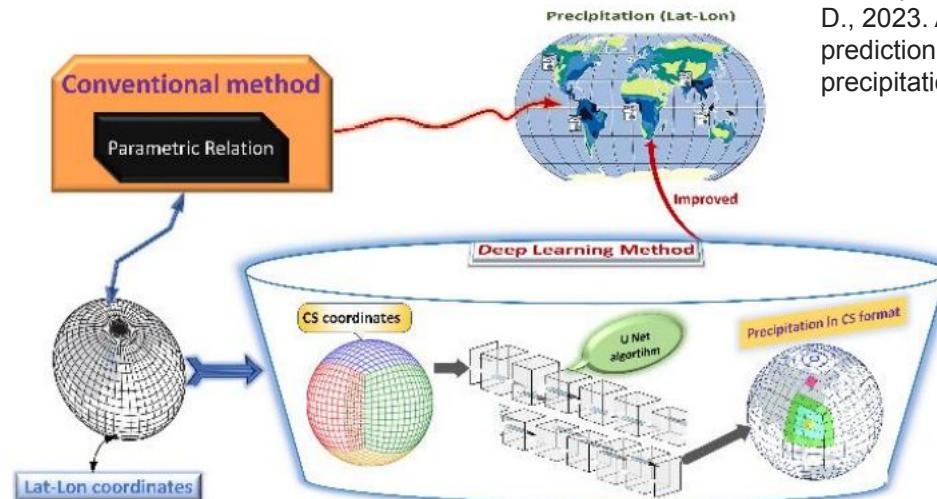
Weyn, J.A., Durran, D.R. and Caruana, R., 2020. Improving data-driven global weather prediction using deep convolutional neural networks on a cubed sphere. *Journal of Advances in Modeling Earth Systems*, 12(9), p.e2020MS002109.

Deep learning for global precipitation prediction

- DLWP and DLWP-CS use temperature at 850 hPa and geopotential at 500 hPa to show comparable and improved performance w.r.t operational models.
- DLWP and DLWP-CS use global domain for data-driven weather forecasting.
- Previous studies either use **limited regions**, do not consider **spherical distortion**, use fields **simpler** to simulate relative to precipitation, do not compare with **operational forecasts** or do not use **CNNs** limiting their capability to capture spatial patterns.
- Need for a system dedicated to global precipitation forecasts which can be considered a digital twin of the real system.

Modified DLWP-CS

Transforms DLWP-CS from a temporal mapping to a function simulating precipitation from different fields

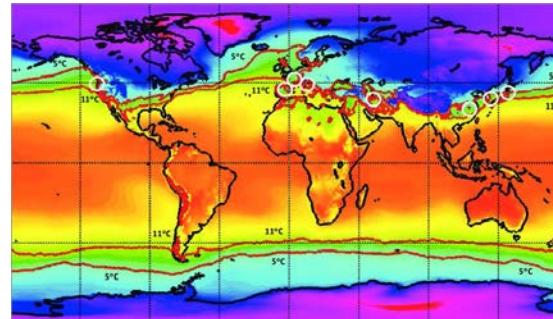


Singh, M., Acharya, N., Patel, P., Jamshidi, S., Yang, Z.L., Kumar, B., Rao, S., Gill, S.S., Chattopadhyay, R., Nanjundiah, R.S. and Niyogi, D., 2023. A modified deep learning weather prediction using cubed sphere for global precipitation. *Frontiers in Climate*, 4, p.1022624.

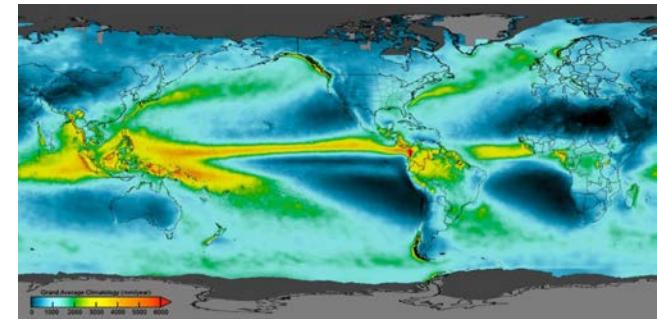
Weatherbench dataset corresponding to total cloud cover and two meter air temperature as precursors and precipitation as the label/target. Training: 1979-2009, Validation: 2010-2011, Testing: 2012-2015. Temporal resolution: hourly

Total Cloud Cover

Surface air temperature



Precipitation



Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S. and Thuerey, N., 2020. WeatherBench: a benchmark data set for data-driven weather forecasting. *Journal of Advances in Modeling Earth Systems*, 12(11), p.e2020MS002203.

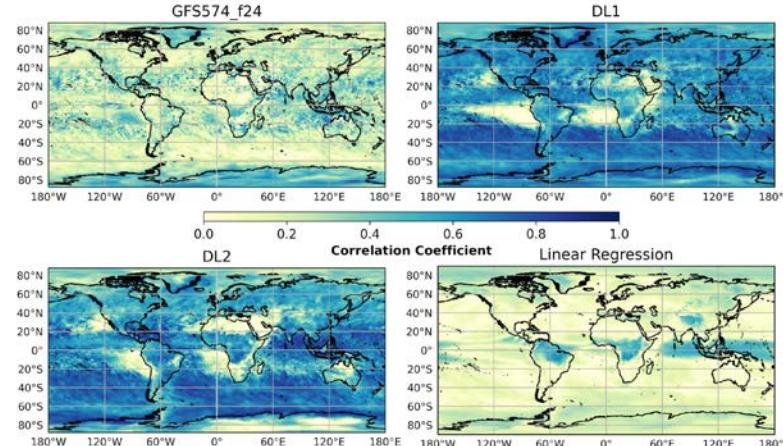
Median of Day-1 precipitation



Singh, M., Acharya, N., Patel, P., Jamshidi, S., Yang, Z.L., Kumar, B., Rao, S., Gill, S.S., Chattopadhyay, R., Nanjundiah, R.S. and Niyogi, D., 2023. A modified deep learning weather prediction using cubed sphere for global precipitation. *Frontiers in Climate*, 4, p.1022624.

Grid point correlations for 2012-2015

- DL1- Total cloud cover as input,
DL2 - Surface air temperature as input
- Grid point correlations show that DL1 and DL2 outperform GFS and linear regression
- Comparability to GFS at 24 hour lead assuming that the input fields to precipitation parameterization do not significantly deviate from the observed states



Singh, M., Acharya, N., Patel, P., Jamshidi, S., Yang, Z.L., Kumar, B., Rao, S., Gill, S.S., Chattopadhyay, R., Nanjundiah, R.S. and Niyogi, D., 2023. A modified deep learning weather prediction using cubed sphere for global precipitation. *Frontiers in Climate*, 4, p.1022624.

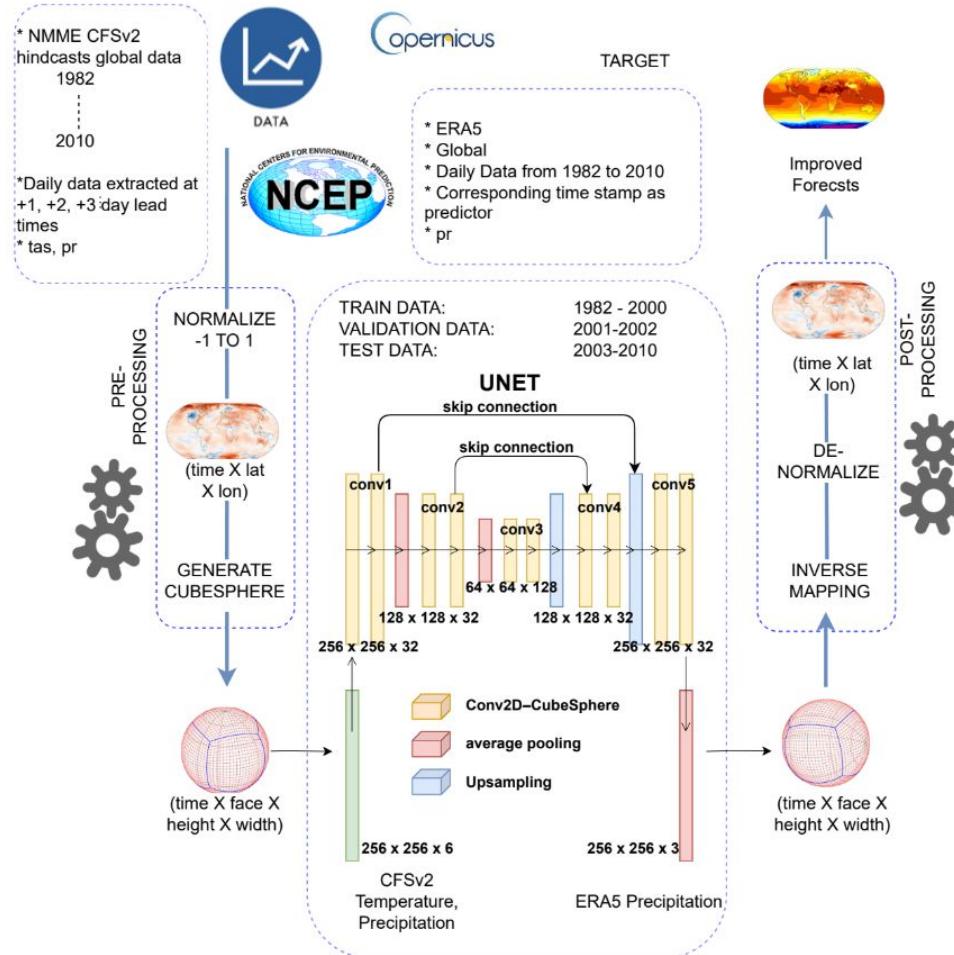
Evaluation of modified DLWP-CS

Region	GFS (baseline)	MDLWP-CS
Canada (50-70N, 130-90W)	0.74	0.82
North Asia (50-70N, 25-140E)	0.80	0.70
Europe (44-54N, 40-100E)	0.79	0.86
United States (32-50N, 110-80W)	0.75	0.84
Central Asia (35-50N, 40-100E)	0.79	0.65
Amazon (5N-10S, 50-70W)	0.69	0.88
Equatorial Africa (10N-10S, 14-35E)	0.64	0.76
South Asia (18-35N, 70-90E)	0.90	0.94

Singh, M., Acharya, N., Patel, P., Jamshidi, S., Yang, Z.L., Kumar, B., Rao, S., Gill, S.S., Chattopadhyay, R., Nanjundiah, R.S. and Niyogi, D., 2023. A modified deep learning weather prediction using cubed sphere for global precipitation. *Frontiers in Climate*, 4, p.1022624.

Index of agreement for the precipitation averaged over different land regions from (a) GFS and (b) MDLWP-CS models with ERA5 precipitation for the test years 2012–2015.

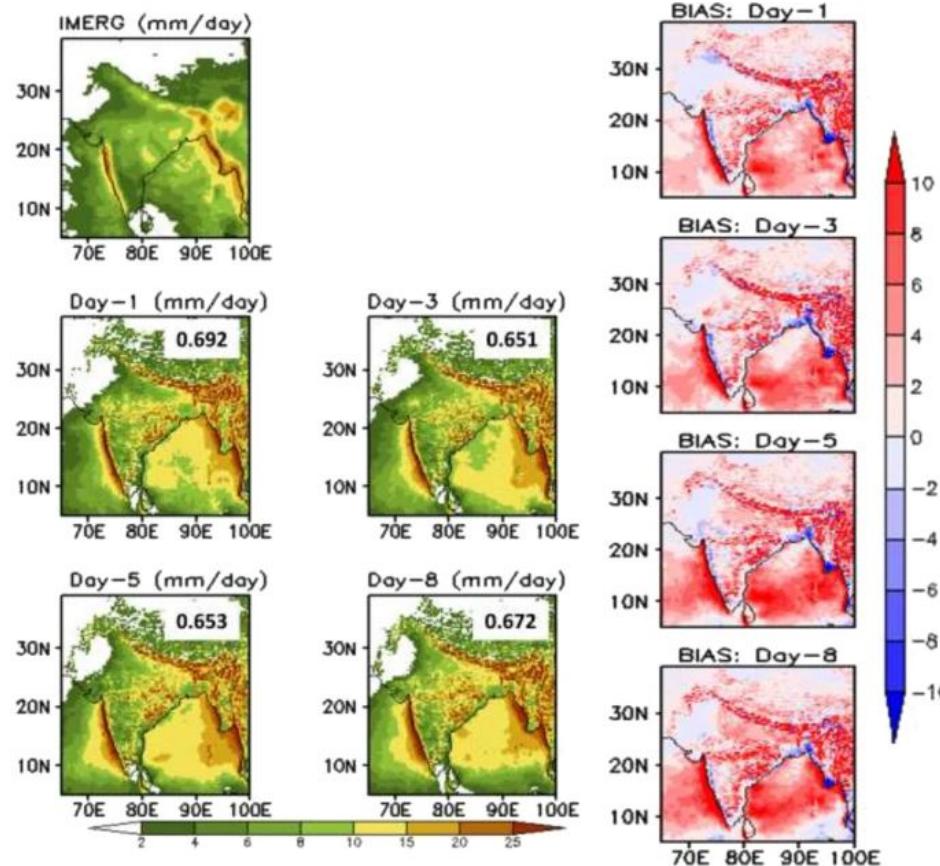
Short-range forecasts of global
precipitation using deep
learning-augmented numerical
weather prediction



Singh, M., Acharya, N., Grover, A., Rao, S.A., Kumar, B., Yang, Z.L. and Niyogi, D., Short-range forecasts of global precipitation using deep learning-augmented numerical weather prediction. *NeurIPS 2022*

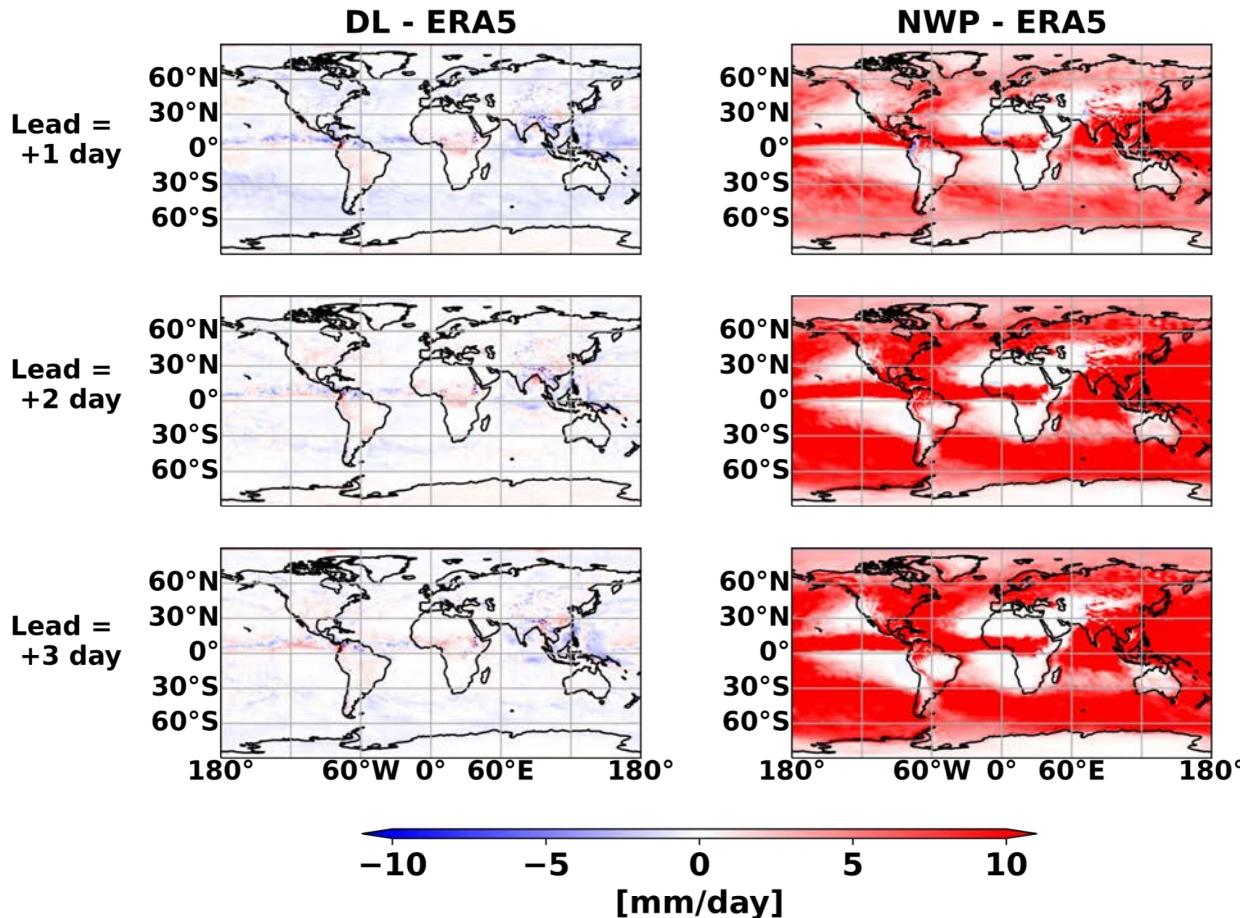
Figure 1: Schematic of the deep learning-augmented numerical weather prediction.

Baseline



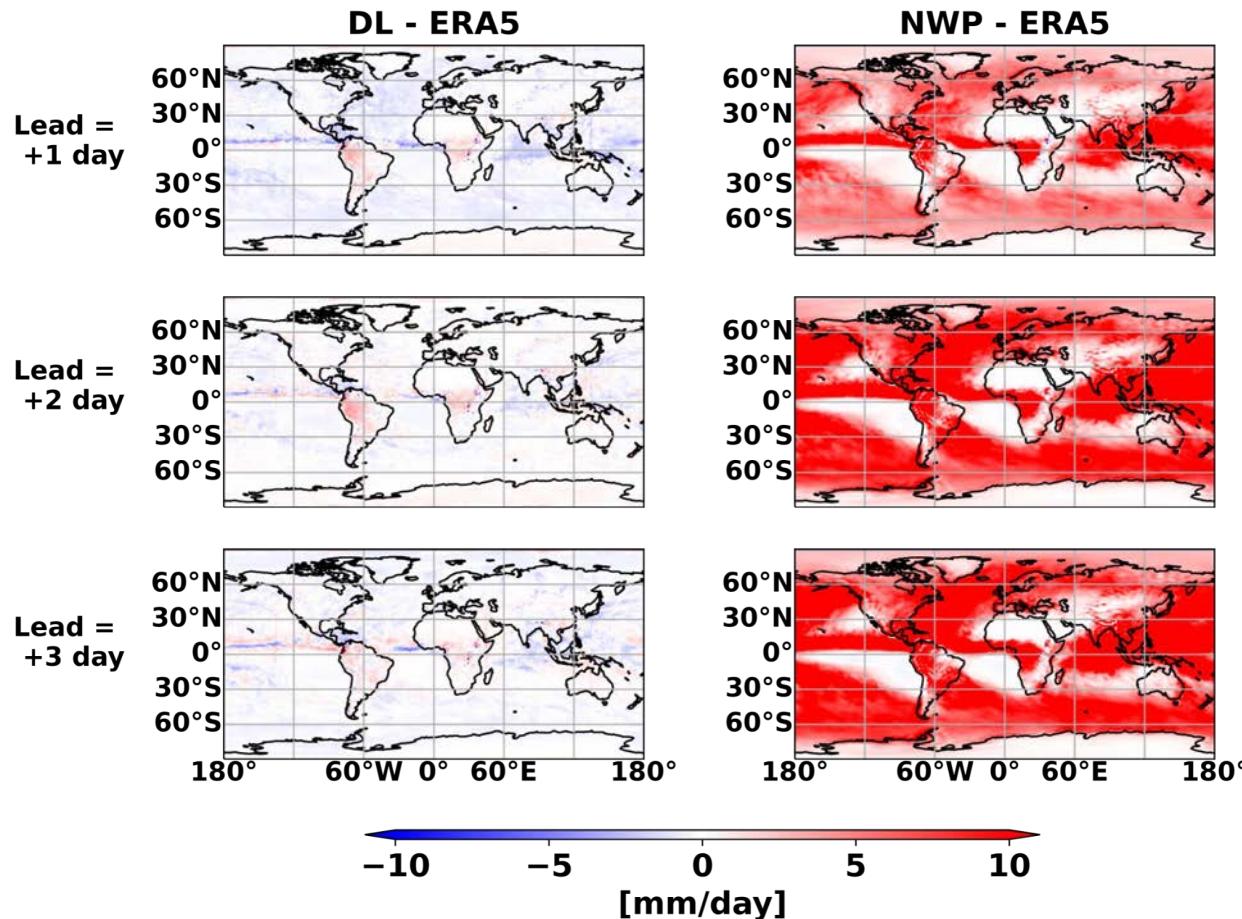
P Mukhopadhyay, VS Prasad, R Krishna, Medha Deshpande, Malay Ganai, Snehlata Tirkey, Sahadat Sarkar, Tanmoy Goswami, CJ Johny, Kumar Roy, et al. Performance of a very high-resolution global forecast system model (gfs t1534) at 12.5 km over the Indian region during the 2016–2017 monsoon seasons. *Journal of Earth System Science*, 128(6):1–18, 2019

Average bias in rainfall (JJA)



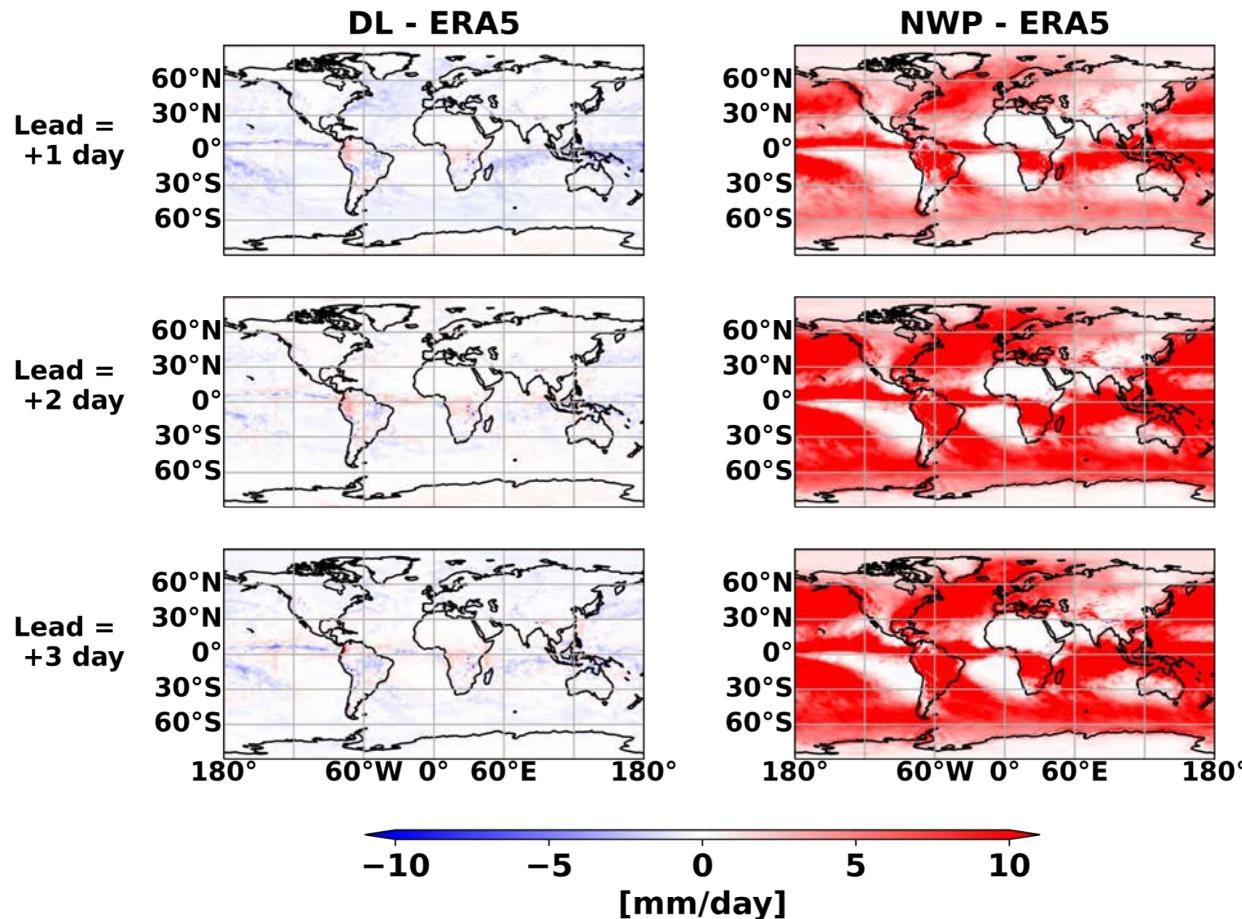
Singh, M., Acharya, N., Grover, A., Rao, S.A., Kumar, B., Yang, Z.L. and Niyogi, D., Short-range forecasts of global precipitation using deep learning-augmented numerical weather prediction. *NeurIPS 2022*

Average bias in rainfall (SON)



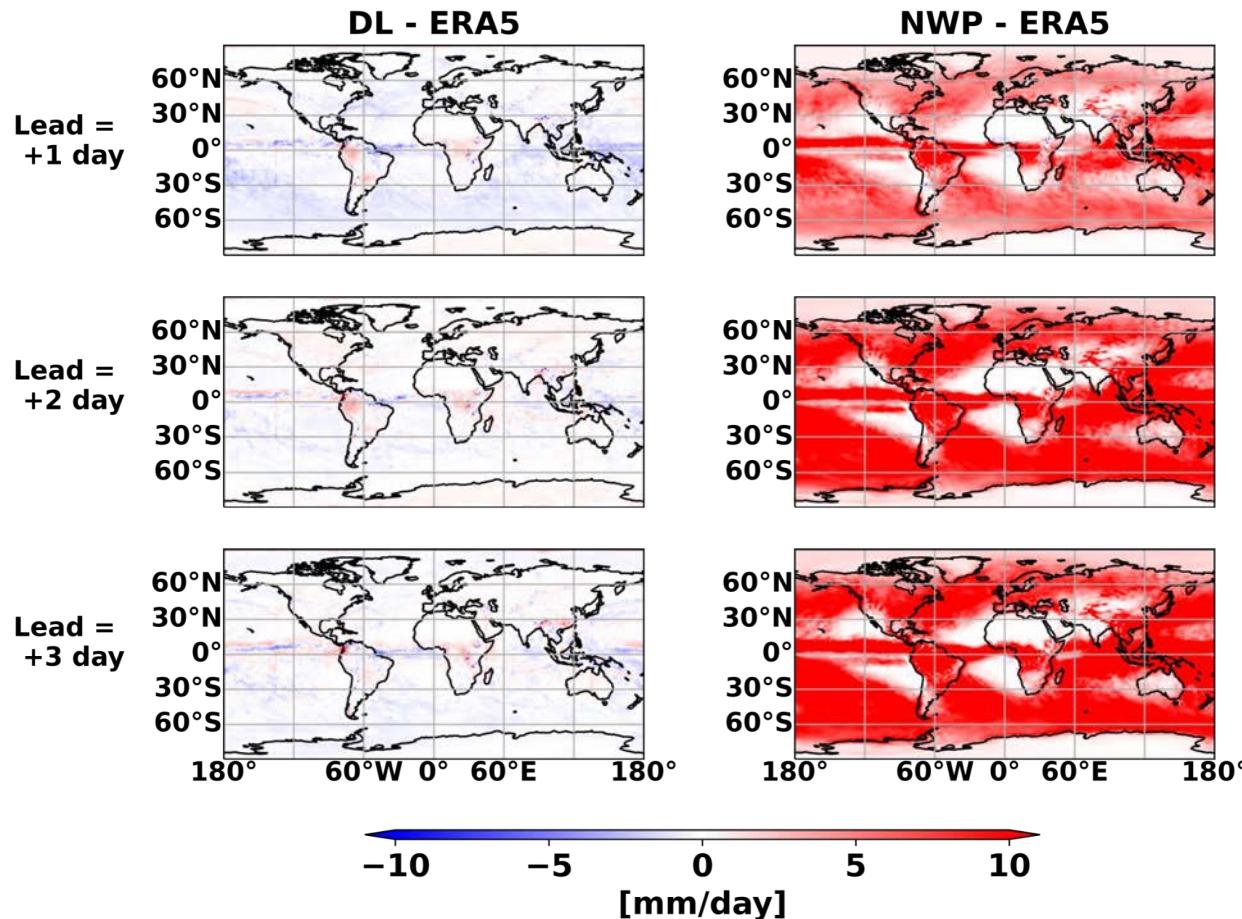
Singh, M., Acharya, N., Grover, A., Rao, S.A., Kumar, B., Yang, Z.L. and Niyogi, D., Short-range forecasts of global precipitation using deep learning-augmented numerical weather prediction. *NeurIPS 2022*

Average bias in rainfall (DJF)

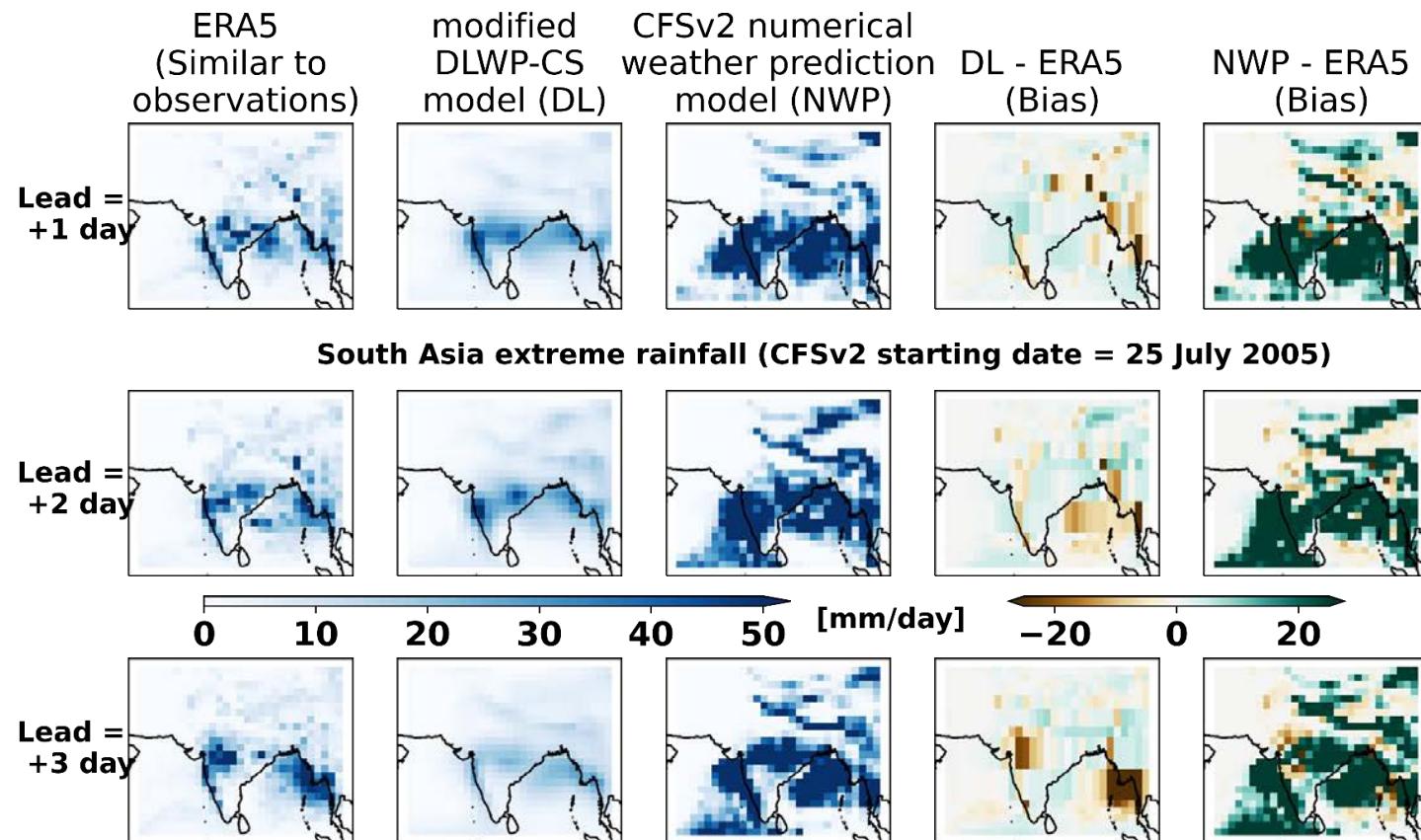


Singh, M., Acharya, N., Grover, A., Rao, S.A., Kumar, B., Yang, Z.L. and Niyogi, D., Short-range forecasts of global precipitation using deep learning-augmented numerical weather prediction. *NeurIPS 2022*

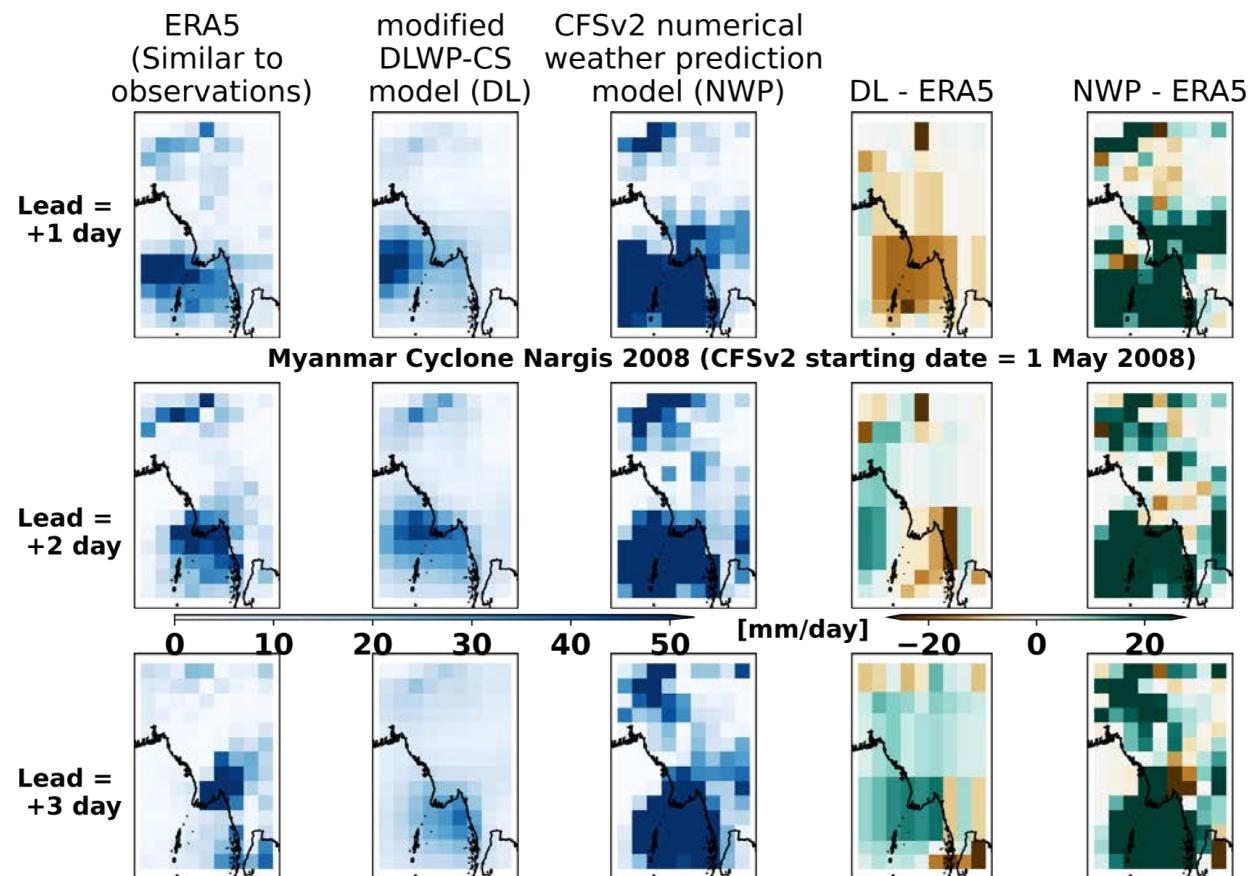
Average bias in rainfall (MAM)



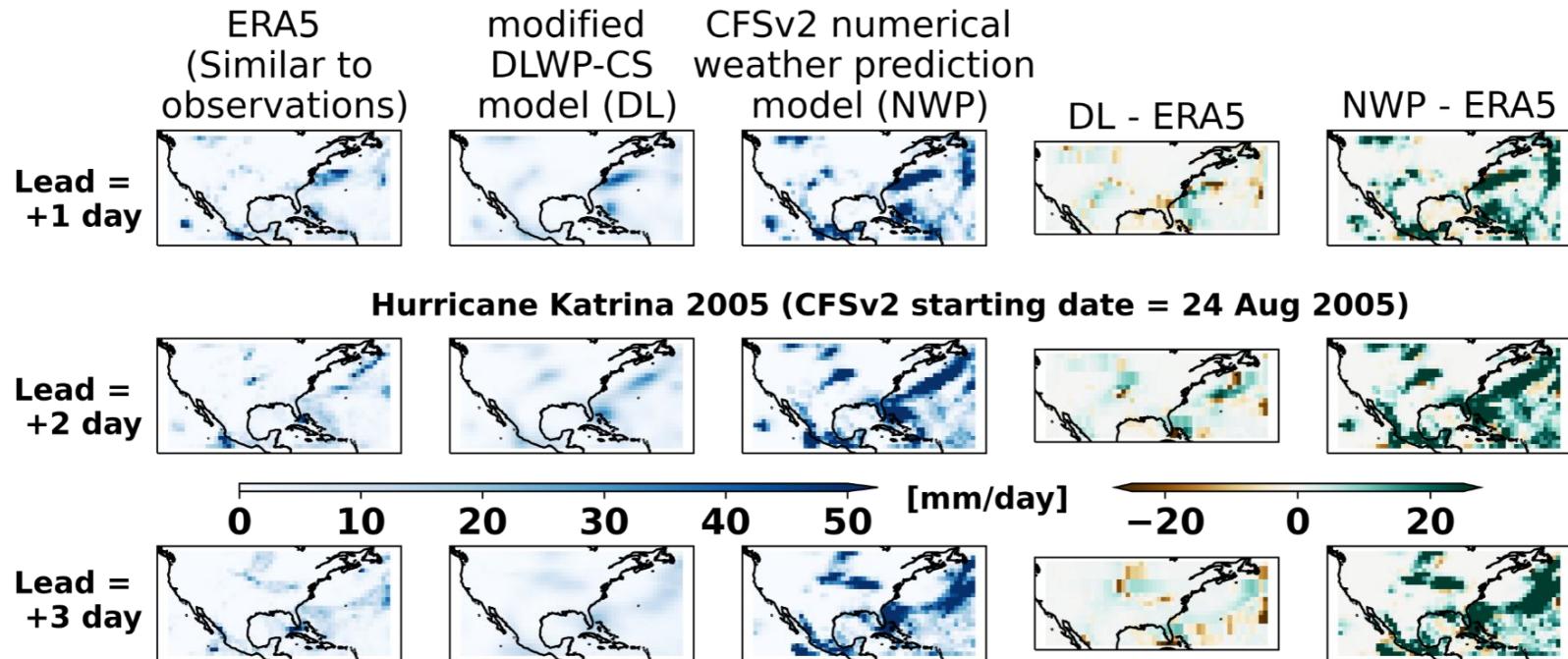
Singh, M., Acharya, N., Grover, A., Rao, S.A., Kumar, B., Yang, Z.L. and Niyogi, D., Short-range forecasts of global precipitation using deep learning-augmented numerical weather prediction. *NeurIPS 2022*



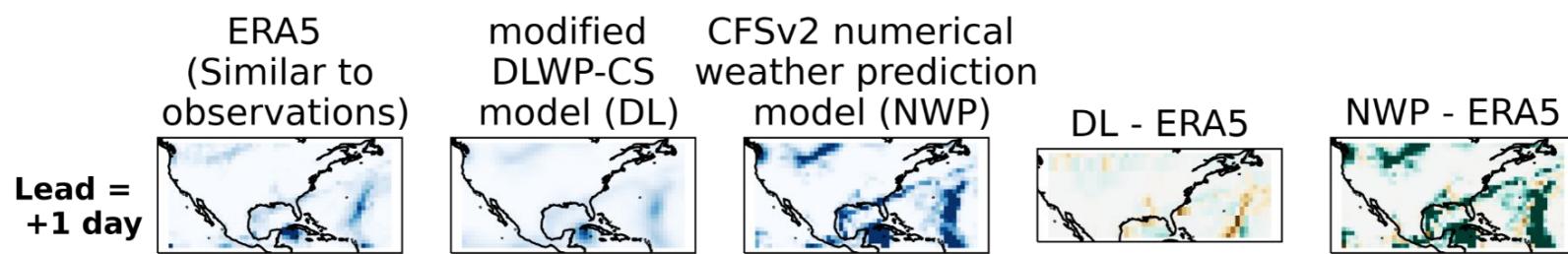
Singh, M., Acharya, N., Grover, A., Rao, S.A.,
Kumar, B., Yang, Z.L. and Niyogi, D., Short-range
forecasts of global precipitation using deep
learning-augmented numerical weather prediction.
NeurIPS 2022



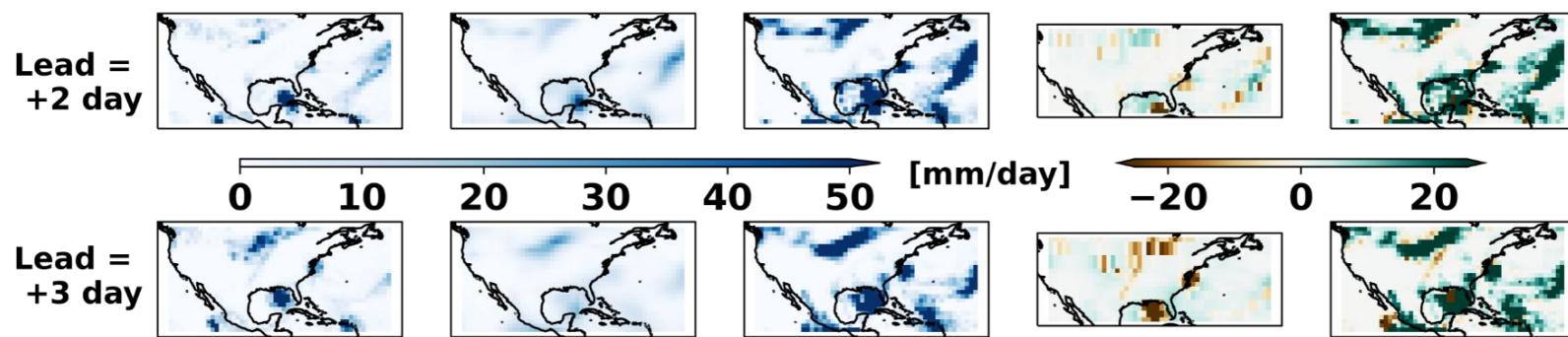
Singh, M., Acharya, N., Grover, A., Rao, S.A.,
Kumar, B., Yang, Z.L. and Niyogi, D., Short-range
forecasts of global precipitation using deep
learning-augmented numerical weather prediction.
NeurIPS 2022

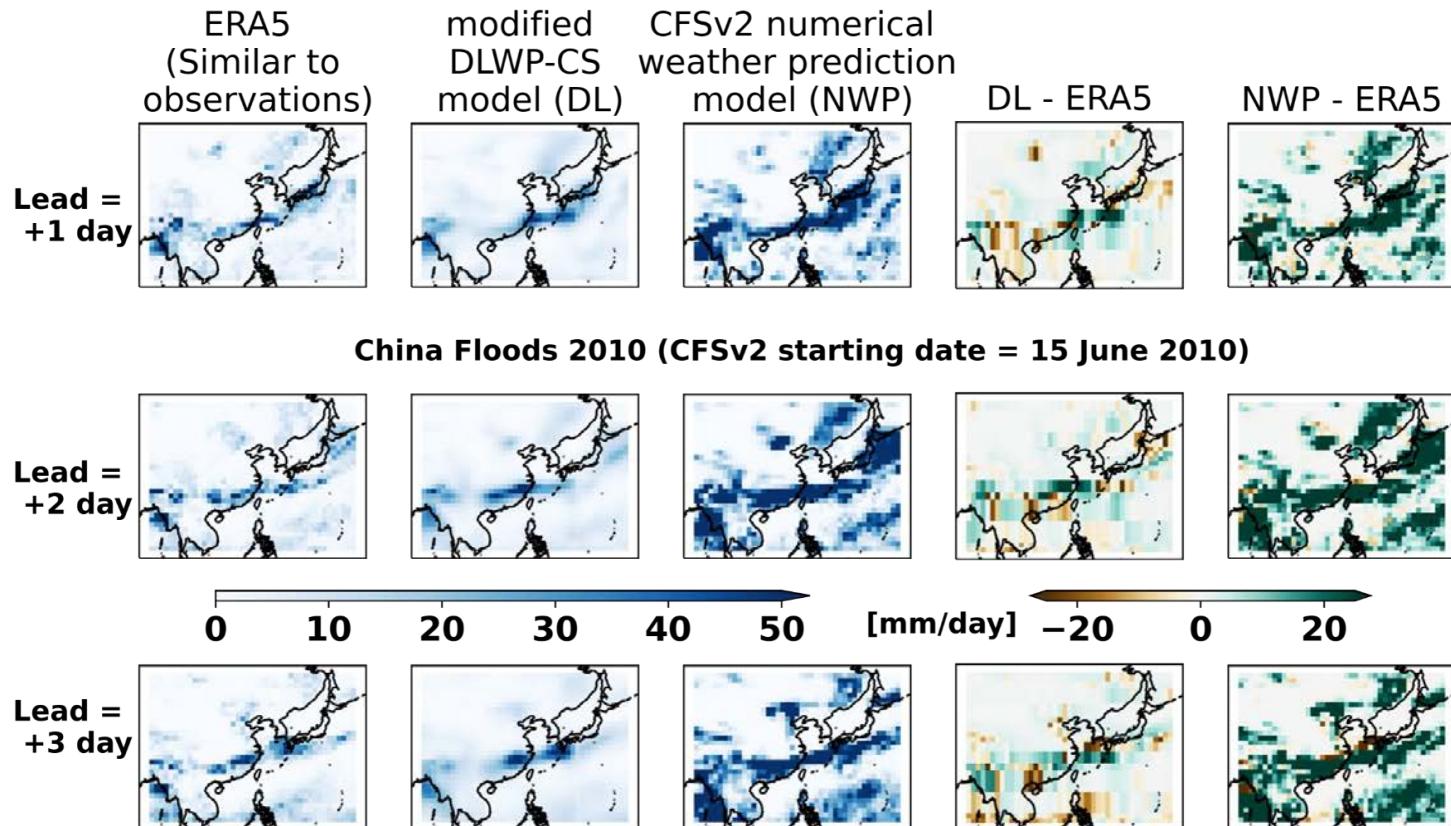


Singh, M., Acharya, N., Grover, A., Rao, S.A.,
Kumar, B., Yang, Z.L. and Niyogi, D., Short-range
forecasts of global precipitation using deep
learning-augmented numerical weather prediction.
NeurIPS 2022

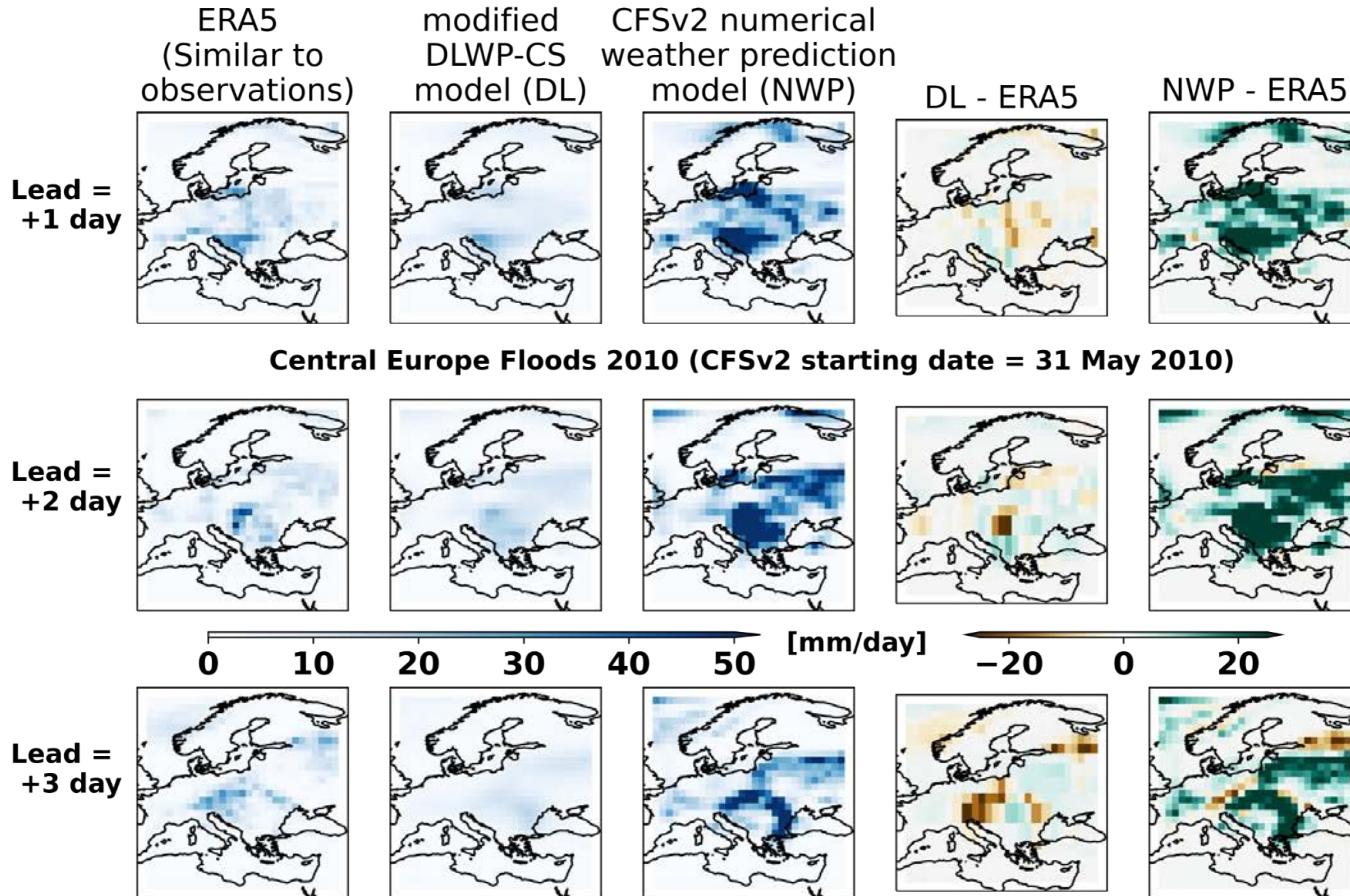


Hurricane Ivan 2004 (CFSv2 starting date = 13 Sep 2004)





Singh, M., Acharya, N., Grover, A., Rao, S.A.,
Kumar, B., Yang, Z.L. and Niyogi, D., Short-range
forecasts of global precipitation using deep
learning-augmented numerical weather prediction.
NeurIPS 2022



Singh, M., Acharya, N., Grover, A., Rao, S.A.,
Kumar, B., Yang, Z.L. and Niyogi, D., Short-range
forecasts of global precipitation using deep
learning-augmented numerical weather prediction.
NeurIPS 2022

Singh, M., Acharya, N., Grover, A., Rao, S.A., Kumar, B., Yang, Z.L. and Niyogi, D., Short-range forecasts of global precipitation using deep learning-augmented numerical weather prediction. *NeurIPS 2022*

Season	Lead = 1 day (mm/day)		Lead = 2 day (mm/day)		Lead = 3 day (mm/day)	
	DL - ERA5	CFSv2 - ERA5	DL - ERA5	CFSv2 - ERA5	DL - ERA5	CFSv2 - ERA5
DJF	-0.3	3.827	0.022	7.66	-0.158	7.657
MAM	-0.282	3.834	0.032	7.811	-0.11	7.89
JJA	-0.334	3.97	-0.02	8.102	-0.115	8.239
SON	-0.299	3.954	0	7.95	-0.148	7.972

Table 1. Performance of the deep learning augmented numerical weather prediction system CFSv2 versus CFSv2 alone. The table shows global average bias/error in simulating precipitation by the hybrid deep learning and CFSv2 system versus CFSv2 alone. DJF (December to February), MAM (March to May), JJA (June to August) and SON (September to November) represent the different months of a year. The performance is shown for the entire test period from the year 2003 to 2010

Events	Lead = 1 day (mm/day)		Lead = 2 day (mm/day)		Lead = 3 day (mm/day)	
	DL - ERA5	CFSv2 - ERA5	DL - ERA5	CFSv2 - ERA5	DL - ERA5	CFSv2 - ERA5
Hurricane Katrina	-0.345	8.839	0.453	12.18	-0.811	10.227
Hurricane Ivan	-0.22	8.466	-0.036	13.48	-1.485	13.135
Cyclone Nargis	-5.37	21.151	-1.245	43.845	2.338	47.233
Europe Floods	-0.2	6.654	-0.015	8.134	0.12	6.94
China Floods	-0.17	11.233	0.465	18.903	-0.48	16.877
India flood	0.003	17.321	0.139	25.297	-0.749	20.259

Table 2. Performance of the deep learning augmented numerical weather prediction system CFSv2 versus CFSv2 alone. The table shows regional bias/error in simulating various extreme precipitation events by the hybrid deep learning and CFSv2 system versus CFSv2 alone. The events occurred as (i) Hurricane Katrina in 2005, (ii) Hurricane Ivan in 2004, (iii) Cyclone Nargis in 2008, (iv) Europe floods in 2010, (v) China flood in 2005 and (vi) India flood in 2005

From global to local
weather prediction

We first need to develop supervised learning datasets. The solution is being provided by **DownScaleBench**

DownScaleBench for developing and applying a deep learning based urban climate downscaling

Singh, M., Acharya, N., Jamshidi, S., Jiao, J., Yang, Z.L., Coudert, M., Baumer, Z. and Niyogi, D., 2023. DownScaleBench for developing and applying a deep learning based urban climate downscaling-first results for high-resolution urban precipitation climatology over Austin, Texas. Computational Urban Science, 3(1), p.22.

1. Station Data

Source: Input data (e.g. reanalysis or Global Historical Climatology Network (GHCN) or satellite product)

Quality Control

Eliminate null values based on user requirements

2. Coarse resolution input

Gridded observations

WRF model simulations

Earth Engine

Planetary Computer

DownScale
Bench

3. High Resolution Target

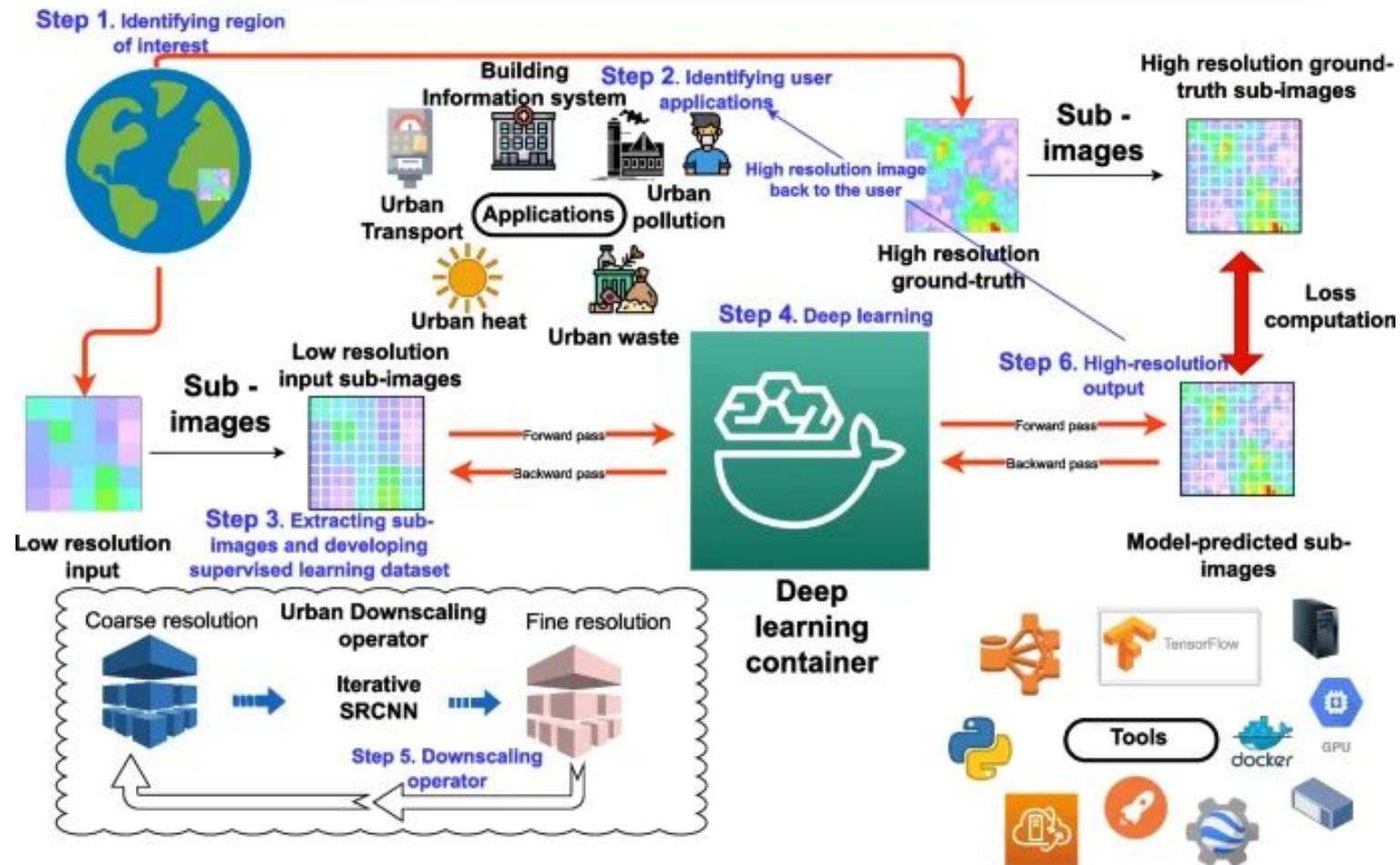
Single Image Super resolution

SRCCNN, SRGAN and other Generator models

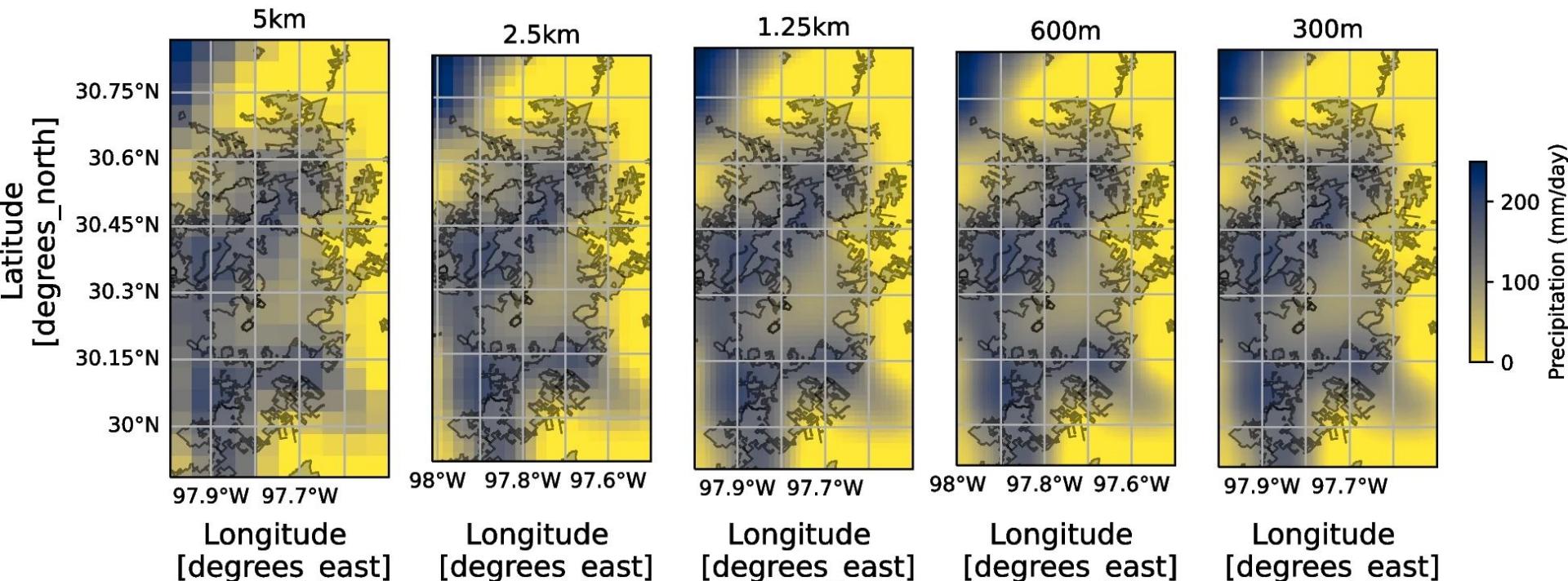
4. Development of supervised learning dataset

Unify coarse resolution, high resolution and station datasets in a single netcdf file

Singh, M., Acharya, N., Jamshidi, S., Jiao, J., Yang, Z.L., Coudert, M., Baumer, Z. and Niyogi, D., 2023. DownScaleBench for developing and applying a deep learning based urban climate downscaling-first results for high-resolution urban precipitation climatology over Austin, Texas. Computational Urban Science, 3(1), p.22.



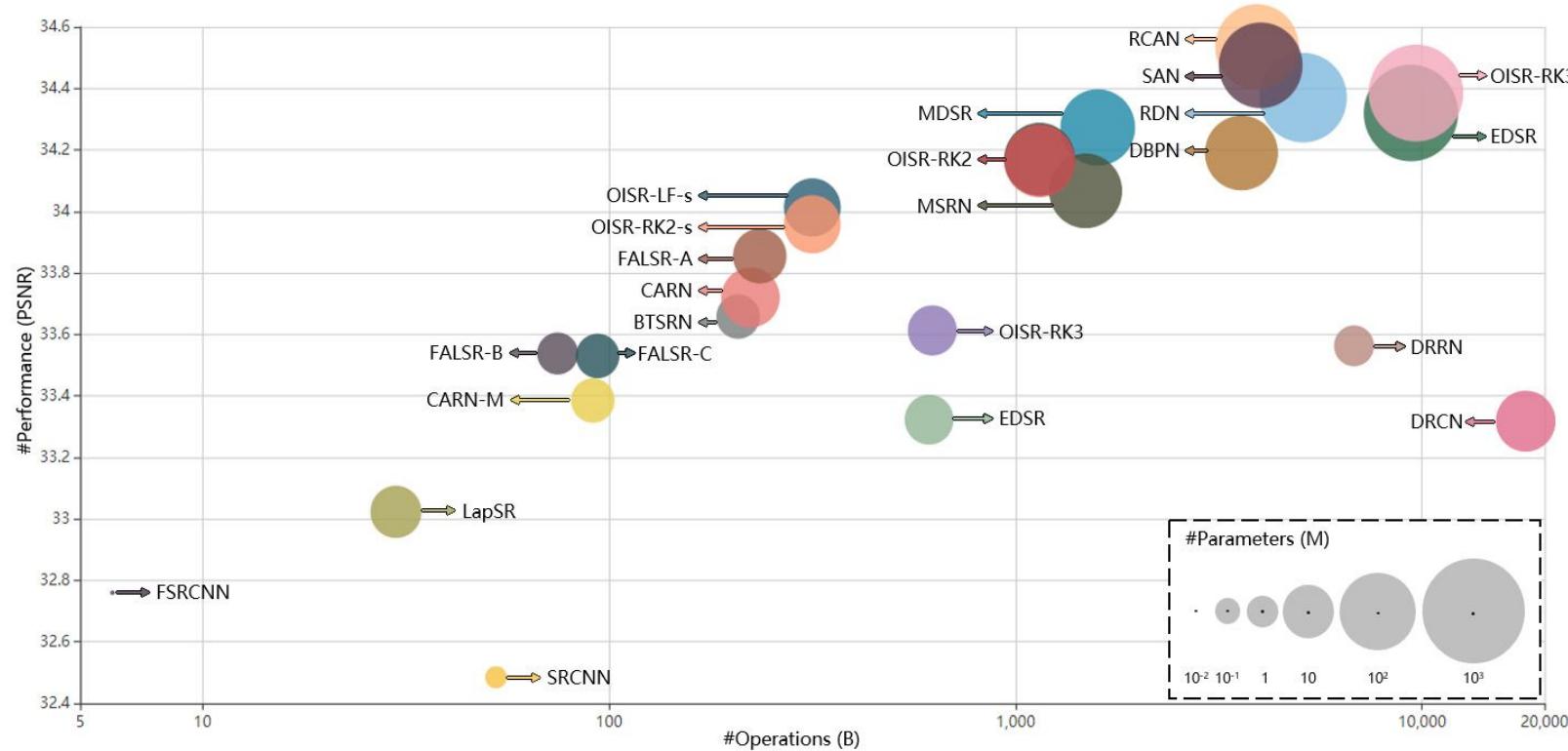
Austin, Texas, USA multi resolution
products for 2013-01-04



Singh, M., Acharya, N., Jamshidi, S., Jiao, J., Yang, Z.L., Coudert, M., Baumer, Z. and Niyogi, D., 2023. DownScaleBench for developing and applying a deep learning based urban climate downscaling-first results for high-resolution urban precipitation climatology over Austin, Texas. Computational Urban Science, 3(1), p.22.

Next, we need state of the art models to perform super-resolution/downscaling. The solution is being provided by **ClimateDownscaleSuite**

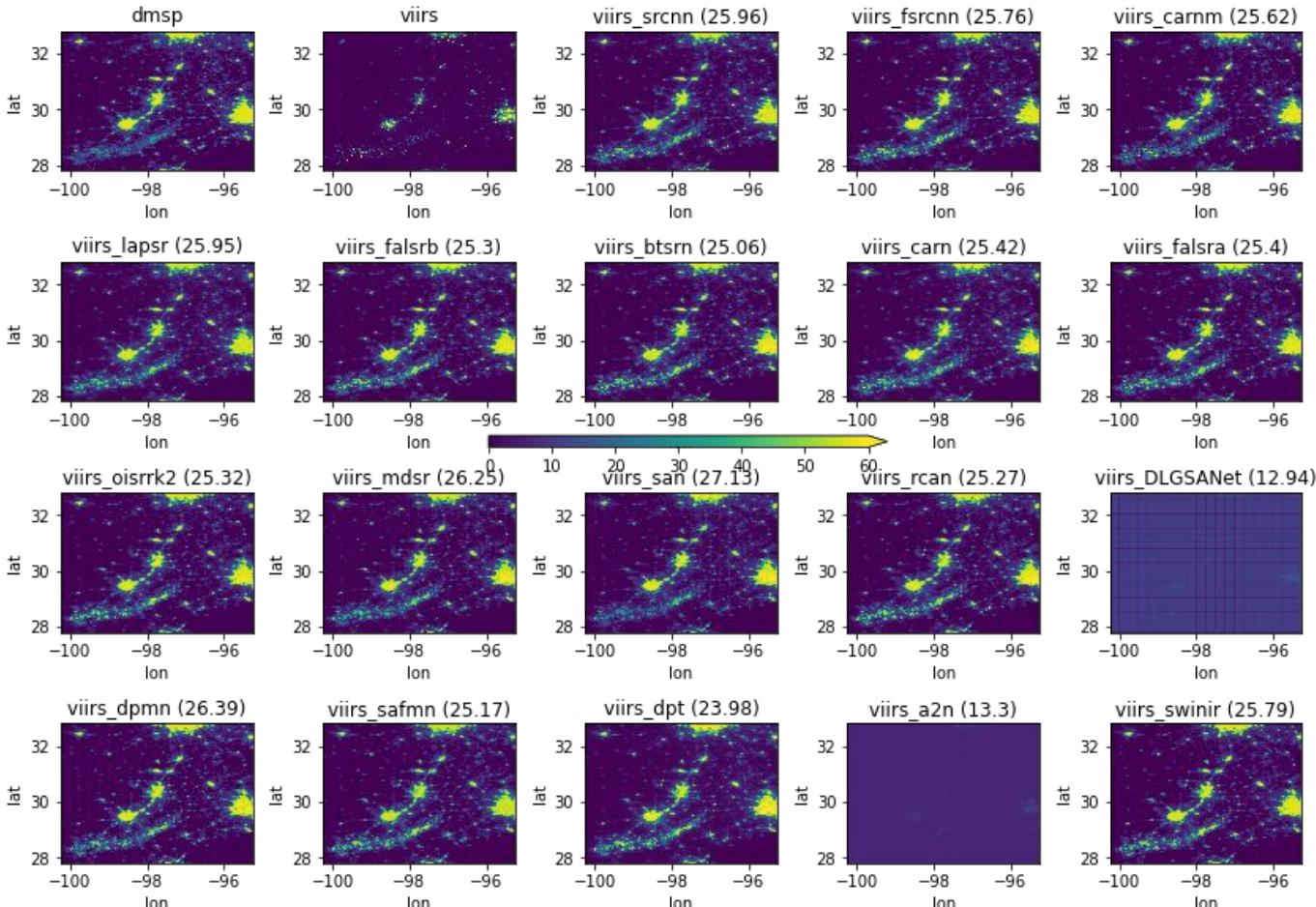
ClimateDownscaleSuite: Unifying deep learning models for weather and climate downscaling



ClimateDownscaleSuite

applied to VIIRS
to DMSP
night time lights
data
transformation

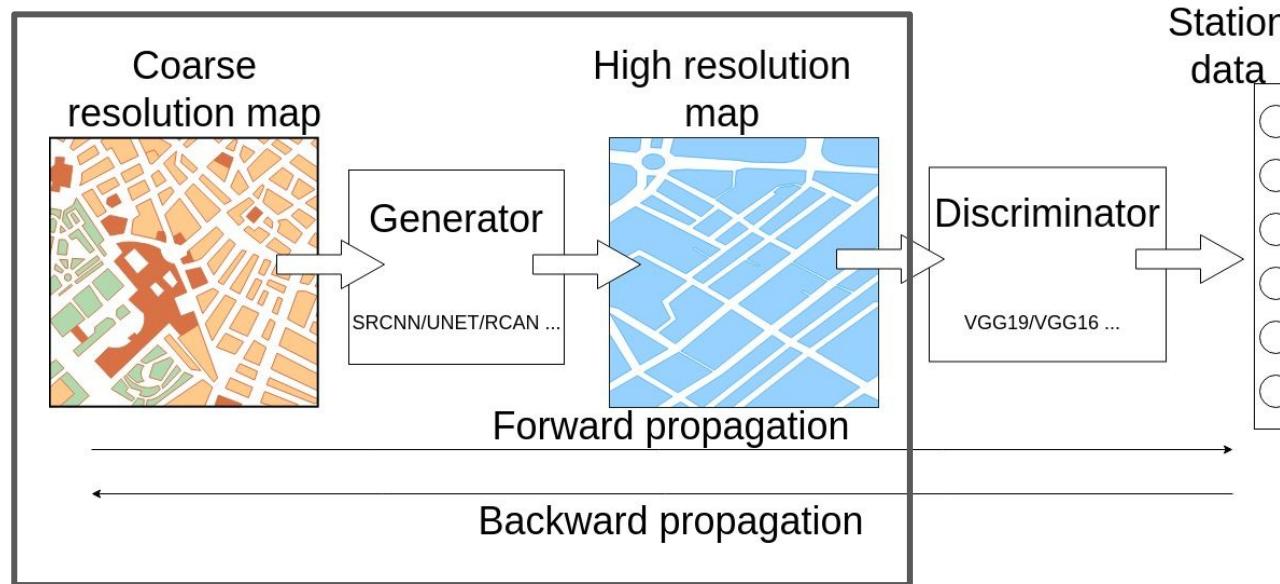
Singh et al,
manuscript in
preparation



We also need state of the art novel methods to fuse station datasets into downscaling algorithms

MeteoGAN is the answer

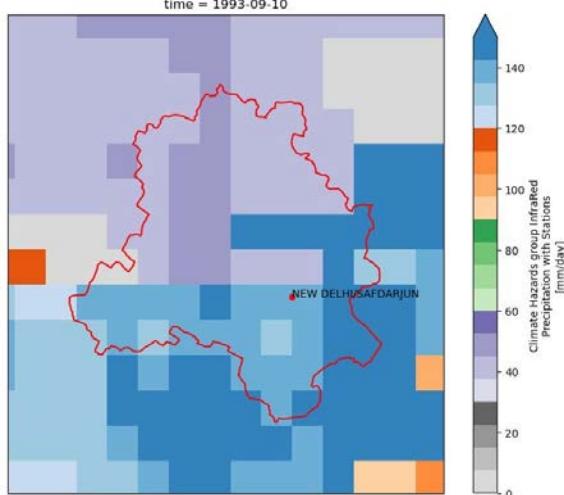
MeteoGAN for urban digital twins



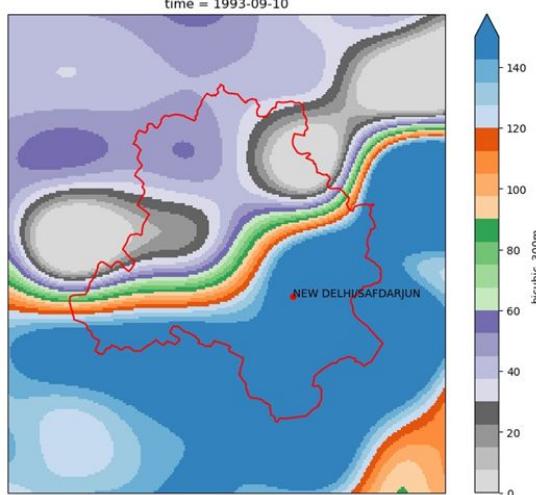
First results from MeteoGAN over Delhi, India

1993-09-10

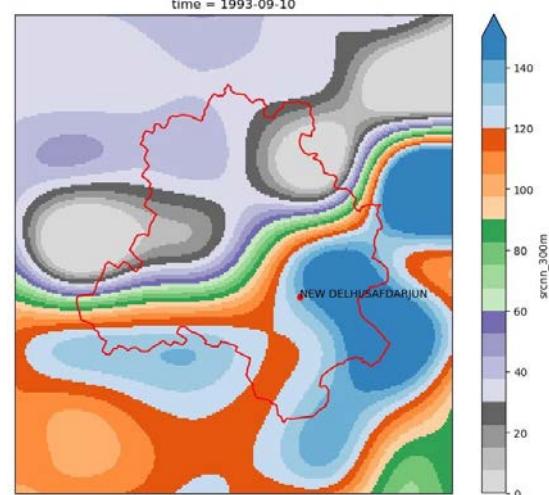
CHIRPS (5 km)



Bicubic (300 m)

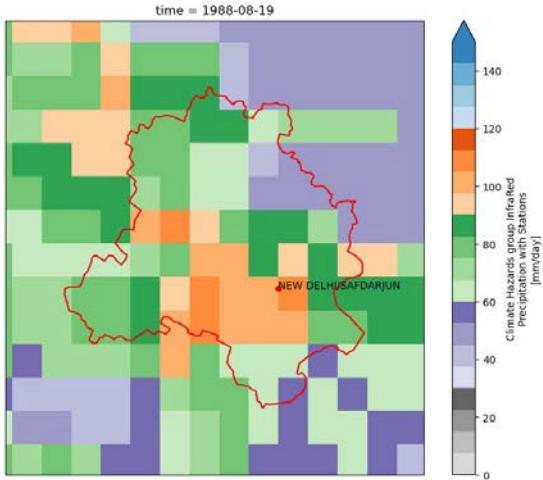


MeteoGAN (300 m)



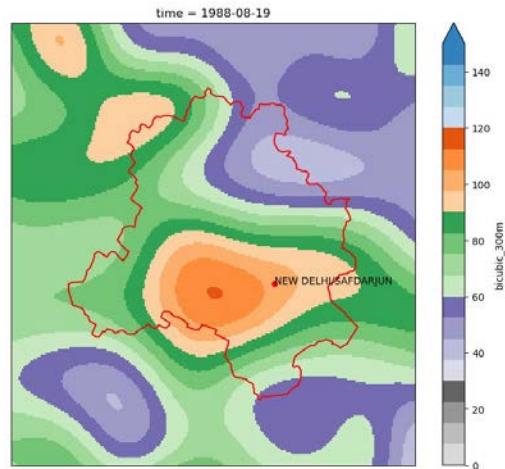
First results from MeteoGAN over Delhi, India

CHIRPS (5 km)

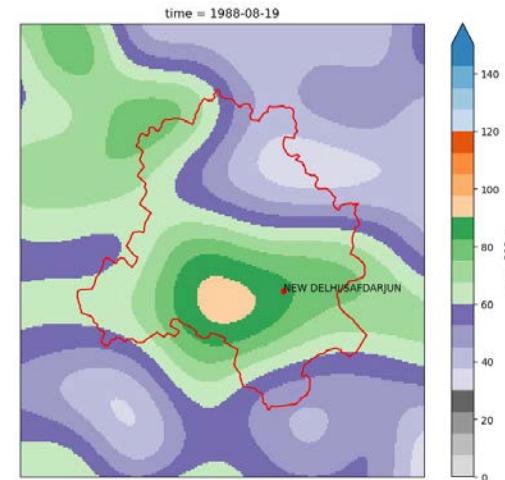


1988-08-19

Bicubic (300 m)

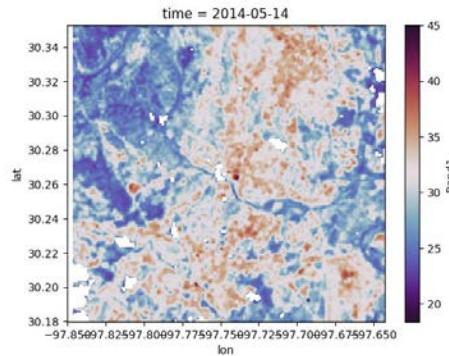
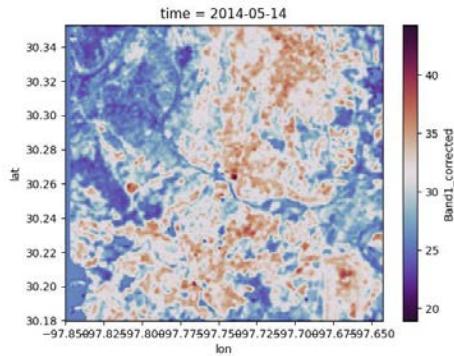


MeteoGAN (300 m)

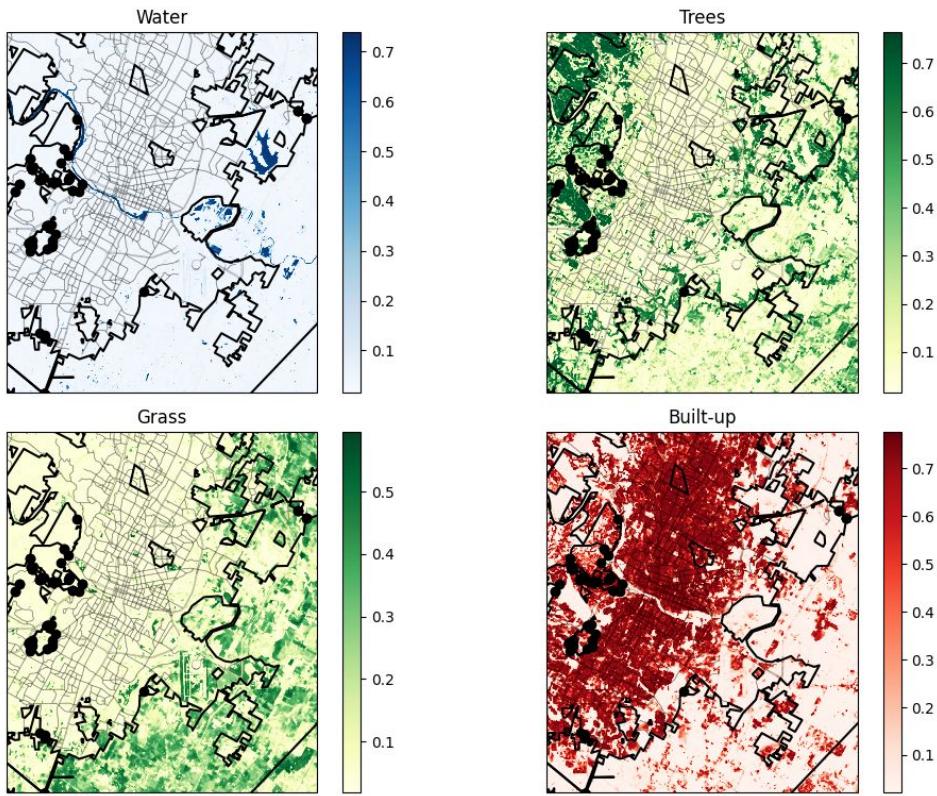


MeteoGAN based land surface temperature at 30-m

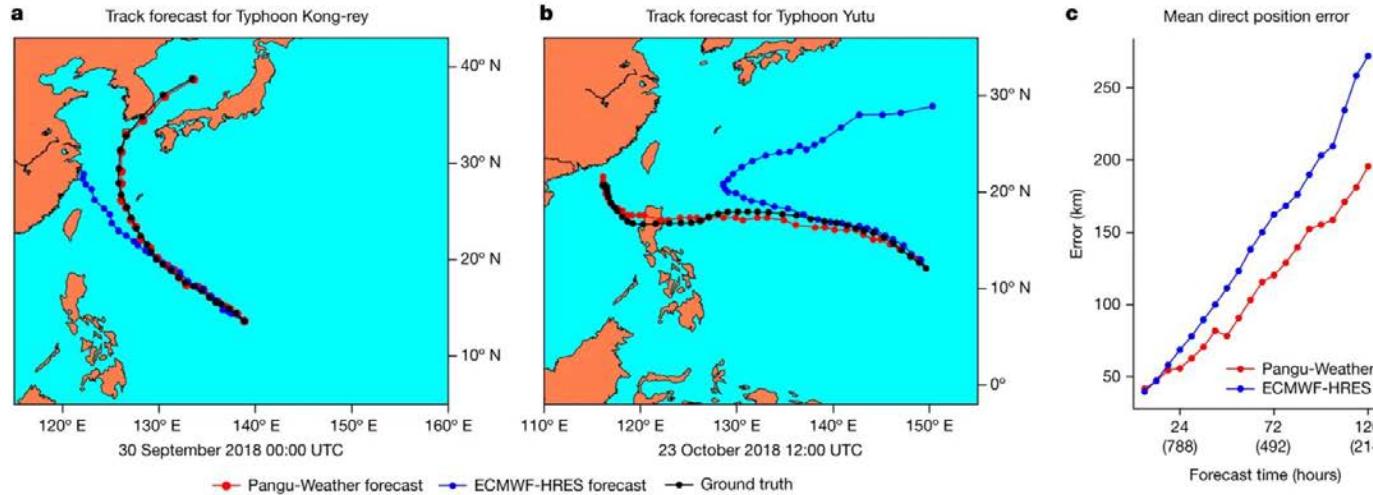
Incorporating physical boundary



LULC from Dynamic world mean over Austin, Texas for 2018-2020



Pangu-Weather - 3D Earth Specific Transformer



a,b, Tracking results for two strong tropical cyclones in 2018, that is, Typhoon Kong-rey (2018–25) and Yutu (2018–26). The initial time point is shown below each panel. The time gap between neighbouring dots is 6 h. Pangu-Weather forecasts the correct path of Yutu (that is, it goes to the Philippines) at 12:00 UTC on 23 October 2018, whereas ECMWF-HRES obtains the same conclusion 2 days later, before which it predicts that Yutu will make a big turn to the northeast. **c**, A comparison between Pangu-Weather and ECMWF-HRES in terms of mean direct position error over 88 cyclones in 2018. Each number in brackets in the x-axis indicates the number of samples used to calculate the average. For example, '(788)' means that there are in total 788 initial points from which the typhoon lasts for at least 24 hours, and the 788 direct position errors of Pangu-Weather and ECMWF-HRES were averaged into the final results. Panels **a** and **b** were plotted using the Matplotlib Basemap toolkit.

Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X. and Tian, Q., 2023. Accurate medium-range global weather forecasting with 3D neural networks. *Nature*, 619(7970), pp.533–538.

GraphCast

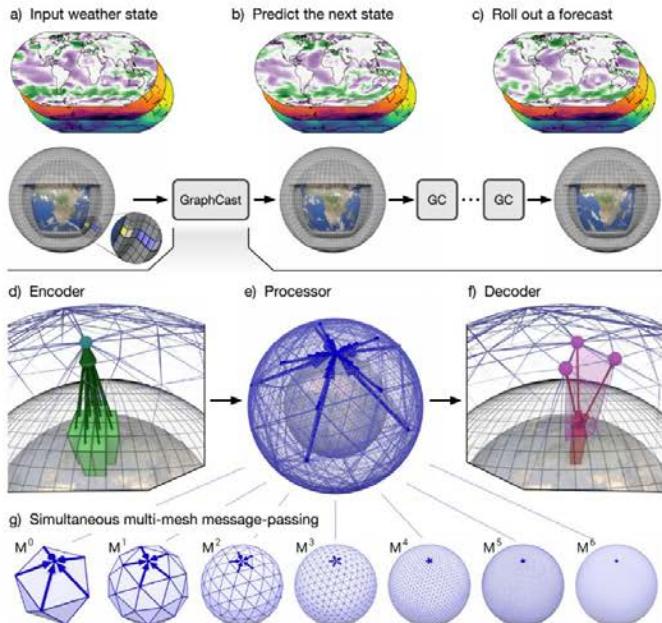
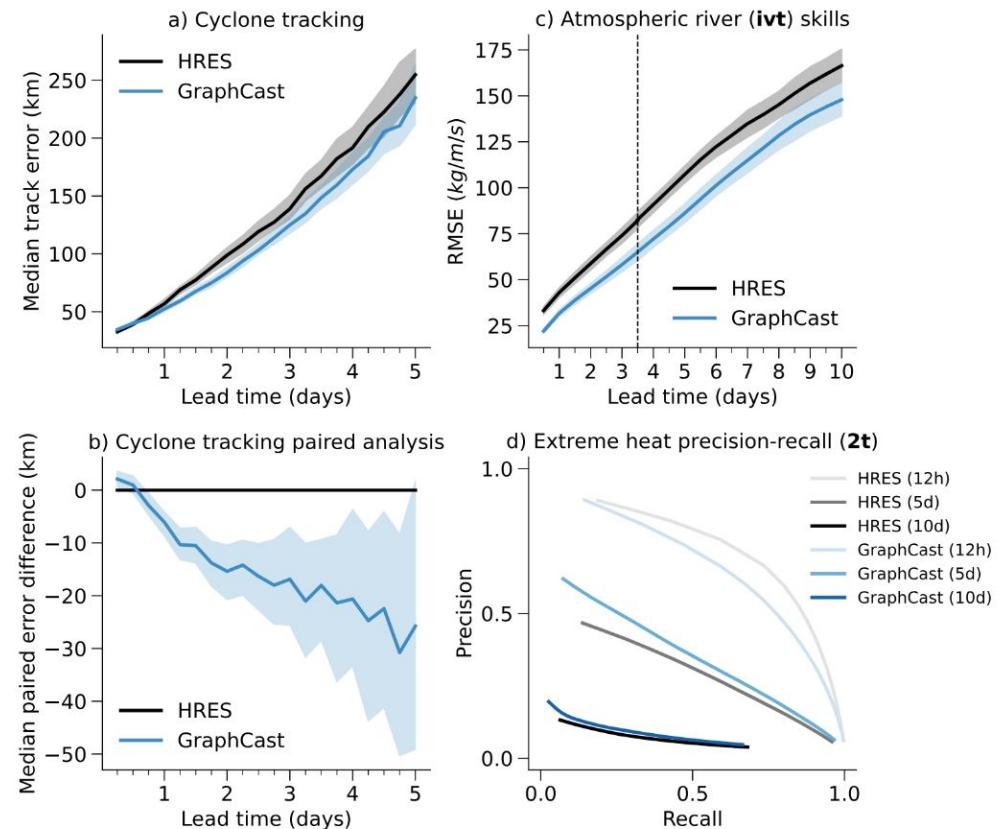


Figure 1 | Model schematic. (a) The input weather state(s) are defined on a 0.25° latitude-longitude grid comprising a total of $721 \times 1440 = 1,038,240$ points. Yellow layers in the closeup pop-out window represent the 5 surface variables, and blue layers represent the 6 atmospheric variables that are repeated at 37 pressure levels ($5 + 6 \times 37 = 227$ variables per point in total), resulting in a state representation of 235,680,480 values. (b) GraphCast predicts the next state of the weather on the grid. (c) A forecast is made by iteratively applying



Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Alet, F., Ravuri, S., Ewalds, T., Eaton-Rosen, Z., Hu, W. and Merose, A., 2023. Learning skillful medium-range global weather forecasting. *Science*, 382(6677), pp.1416-1421.

Fourcastnet

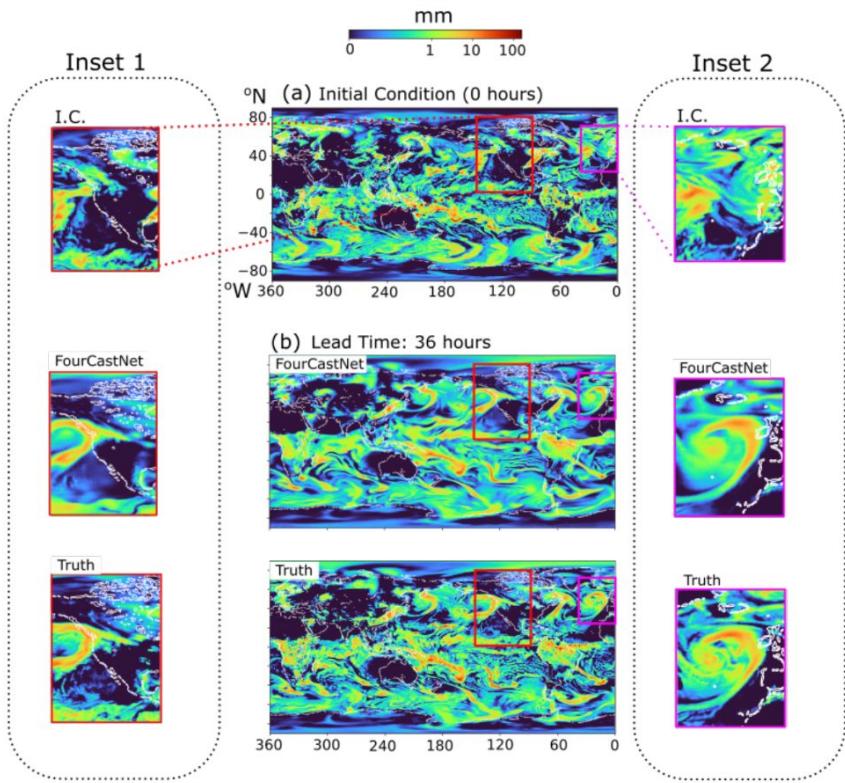
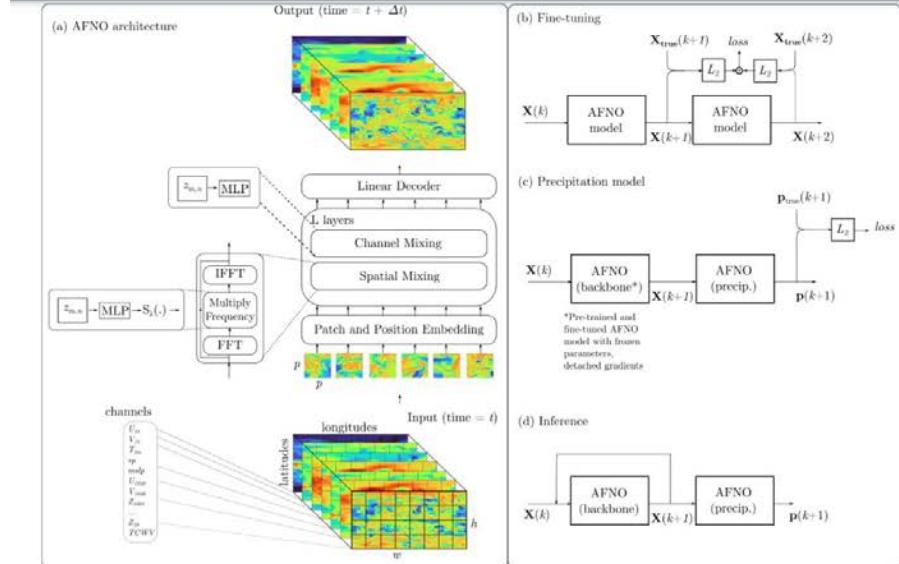
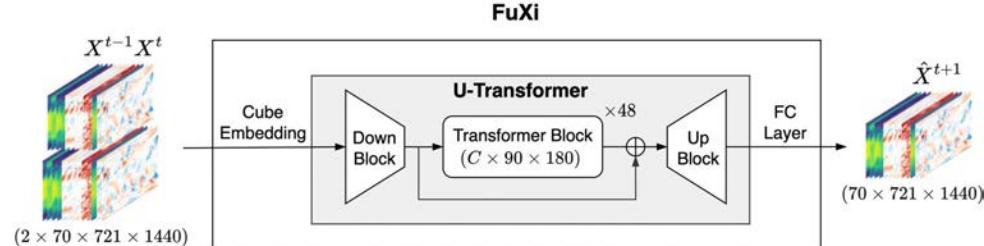


Figure 2: (a) The multi-layer transformer architecture that utilizes the Adaptive Fourier Neural Operator with shared MLP and frequency soft-thresholding for spatial token mixing. The input frame is first divided into a $h \times w$ grid of patches, where each patch has a small size $p \times p \times c$. Each patch is then embedded in a higher dimensional space with high number of latent channels and position embedding is added to form a sequence of tokens. Tokens are then mixed spatially using AFNO, and subsequently for each token the latent channels are mixed. This process is repeated for L layers, and finally a linear decoder reconstructs the patches for the next frame from the final embedding. The right-hand panels describe the FourCastNet model's additional training and inference modes: (b) two-step fine-tuning, (c) backbone model that forecasts the 20 variables in Table 1 with secondary precipitation diagnostic model (note that $p(k+1)$ denotes the 6 hour accumulated total precipitation that falls between $k+1$ and $k+2$ time steps) (d) forecast model in free-running autoregressive inference mode.

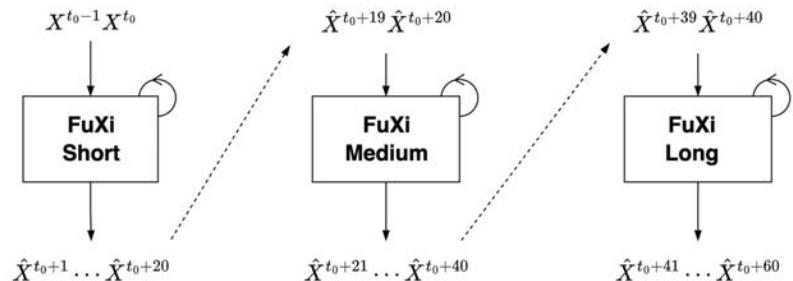
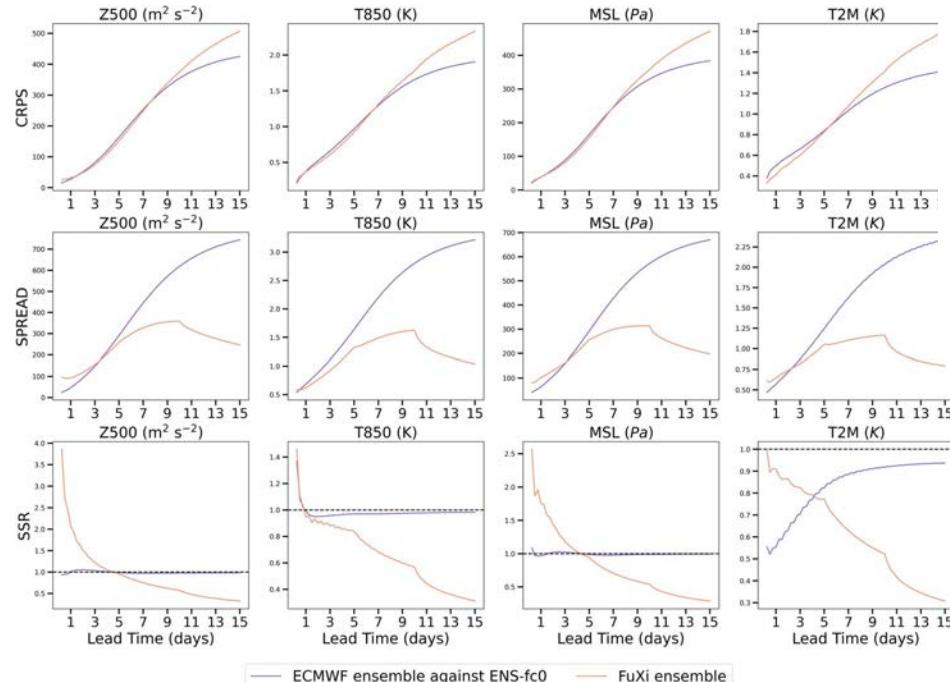
Kurth, T., Subramanian, S., Harrington, P., Pathak, J., Mardani, M., Hall, D., Miele, A., Kashinath, K. and Anandkumar, A., 2023, June. Fourcastnet: Accelerating global high-resolution weather forecasting using adaptive fourier neural operators. In *Proceedings of the platform for advanced scientific computing conference* (pp. 1-11).

FuXi

a) The overall architecture of FuXi model



b) Cascade model architecture



Chen, L., Zhong, X., Zhang, F., Cheng, Y., Xu, Y., Qi, Y. and Li, H., 2023. FuXi: a cascade machine learning forecasting system for 15-day global weather forecast. *npj Climate and Atmospheric Science*, 6(1), p.190.

SwinRDM

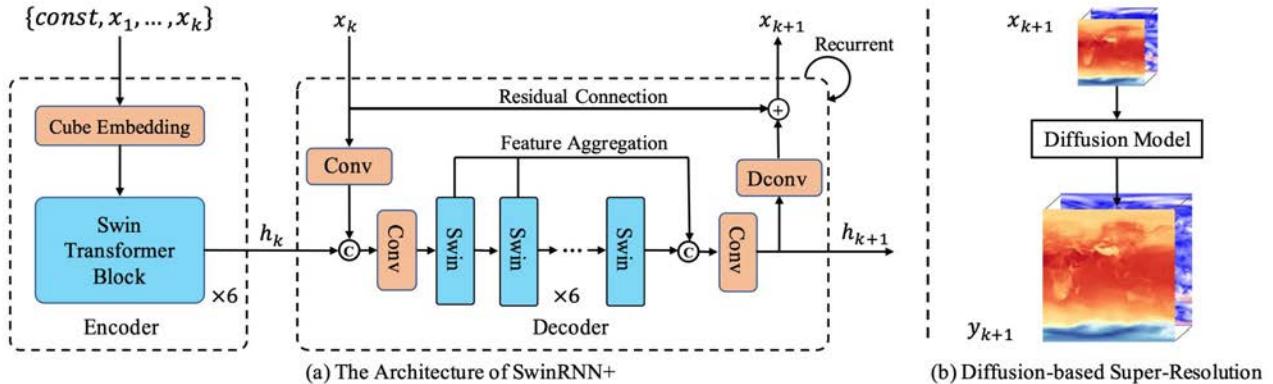


Figure 1: The SwinRDM consists of two parts: (a) the low-resolution forecasting model SwinRNN+ is an improved version of SwinRNN, which adopts a single-scale architecture and adds a multi-layer feature aggregation component, and (b) the diffusion-based super-resolution model conditions on the prediction x_{k+1} from SwinRNN+.

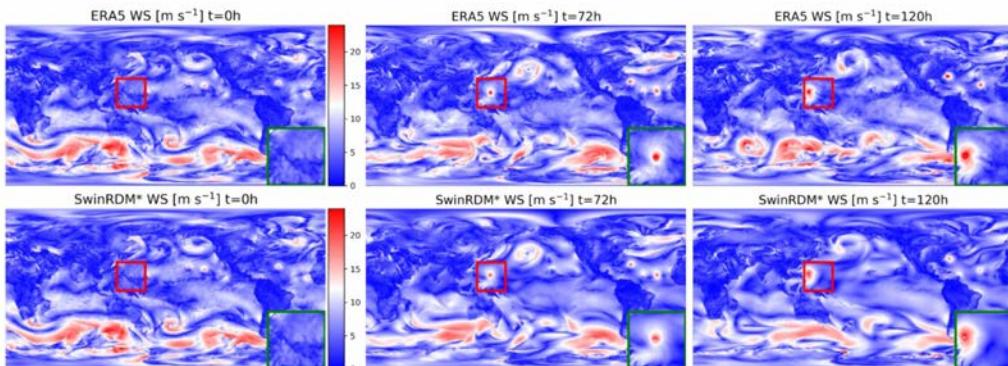


Figure 5: Qualitative illustration of a global near-surface wind forecast generated by our SwinRDM*. The prediction starts at the initial time of September 8, 2018, 06:00 UTC. The zoom-in area shows the beginning of Super Typhoon Mangkhut. Our method successfully forecasts Super Typhoon Mangkhut with high accuracy and rich fine-scale features.

Chen, L., Du, F., Hu, Y., Wang, Z. and Wang, F., 2023, June. Swinrdm: integrate swinrnn with diffusion model towards high-resolution and high-quality weather forecasting. In *Proceedings of the AAAI Conference on Artificial Intelligence* (Vol. 37, No. 1, pp. 322-330).

NeuralGCM

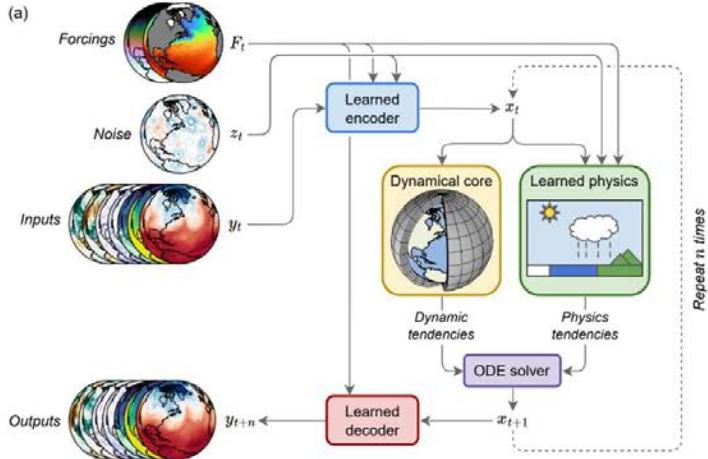
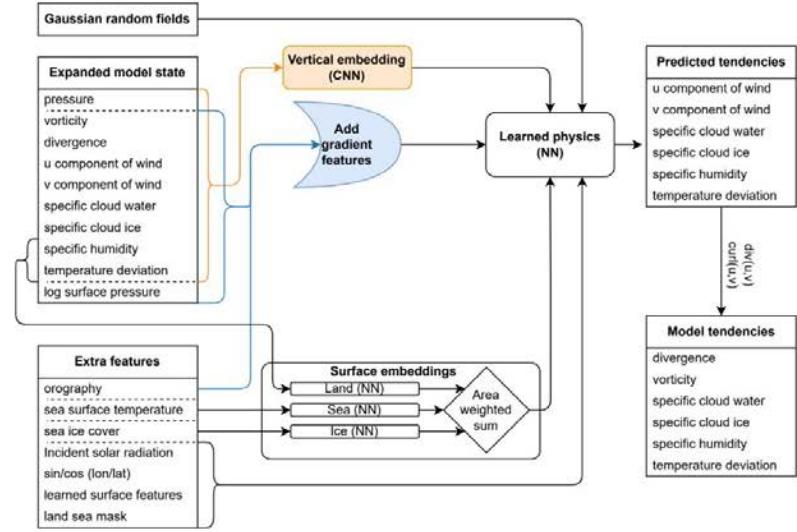


Fig. 1 Structure of the NeuralGCM model. (a) Overall model structure, showing how forcings F_t , noise z_t (for stochastic models), and inputs y_t are encoded into the model state x_t . Model state is fed into the dynamical core, and alongside forcings and noise into the learned physics module. This produces tendencies (rates of change) used by an implicit-explicit ODE solver to advance the state in time. The new model state x_{t+1} can then be fed back into another time step, or decoded into model predictions. (b) Inset of the learned physics module, which feeds data for individual columns of the atmosphere into a neural network used to produce physics tendencies in that vertical column.



Kochkov, D., Yuval, J., Langmore, I., Norgaard, P., Smith, J., Mooers, G., Lottes, J., Rasp, S., Düben, P., Klöwer, M. and Hatfield, S., 2023. Neural general circulation models. *arXiv preprint arXiv:2311.07222*.

Aurora

Cristian Bodnar^{*, 1}, Wessel P. Bruinsma^{*, 1}, Ana Lucic^{*, 1}, Megan Stanley^{*, 1},
 Johannes Brandstetter^{3, †}, Patrick Garvan¹, Maik Riechert¹, Jonathan Weyn², Haiyu Dong²,
 Anna Vaughan⁴, Jayesh K. Gupta^{5, †}, Kit Tamiratnam², Alex Archibald⁴, Elizabeth Heider¹,
 Max Welling^{6, †}, Richard E. Turner^{1, 4}, and Paris Perdikaris¹

¹Microsoft Research AI for Science

²Microsoft Corporation

³JKU Linz

⁴University of Cambridge

⁵Poly Corporation

⁶University of Amsterdam

*Equal contribution †Work done while at Microsoft Research

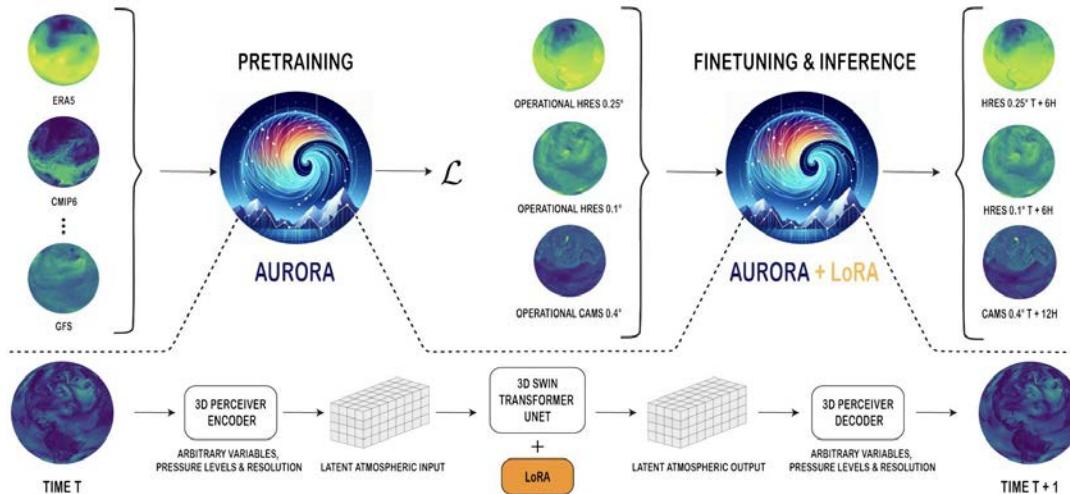


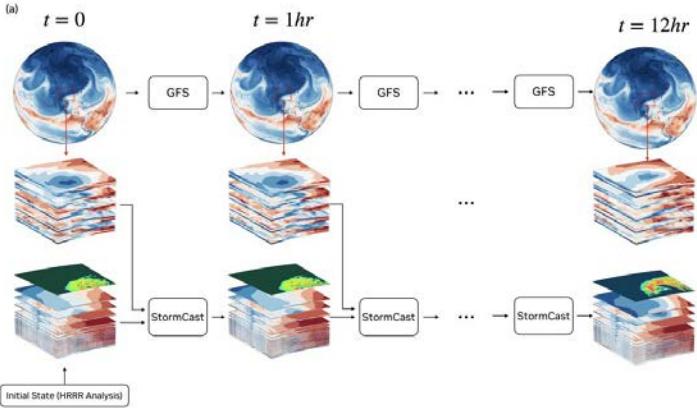
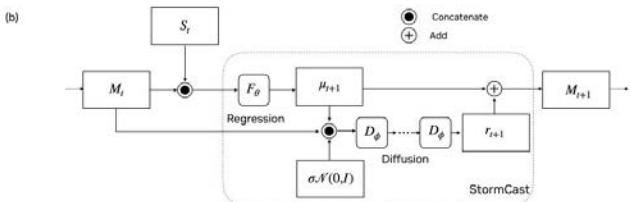
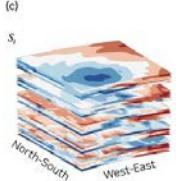
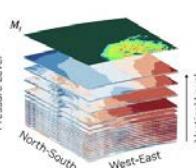
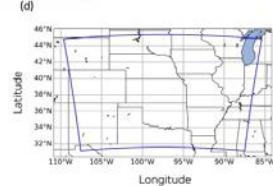
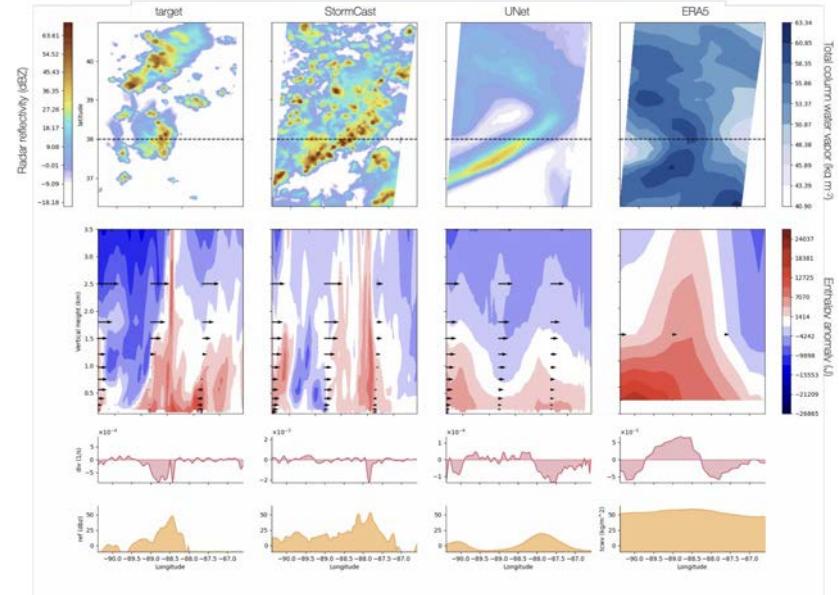
Figure 1: **Aurora is a 1.3 billion parameter foundation model for high-resolution forecasting of weather and atmospheric processes.** Aurora is a flexible 3D Swin Transformer with 3D Perceiver-based encoders and decoders. At pretraining time, Aurora is optimised to minimise a loss \mathcal{L} on multiple heterogeneous datasets with different resolutions, variables, and pressure levels. The model is then fine-tuned in two stages: (1) short-lead time fine-tuning of the pretrained weights (2) long-lead time (rollout) fine-tuning using Low Rank Adaptation (LoRA). The fine-tuned models are then deployed to tackle a diverse collection of operational forecasting scenarios at different resolutions.

StormCast

Jaideep Pathak^{1*}, Yair Cohen^{1*}, Piyush Garg¹, Peter Harrington^{2*}, Noah Brenowitz¹, Dale Durran^{1,3}, Morteza Mardani¹, Arash Vahdat¹, Shaoming Xu^{1,4}, Karthik Kashinath¹, Michael Pritchard¹

August 21, 2024

¹NVIDIA Corporation
²Lawrence Berkeley National Laboratory
³University of Washington
⁴University of Minnesota
^{*}Equal Contribution



DIFFOBS: GENERATIVE DIFFUSION FOR GLOBAL FORECASTING OF SATELLITE OBSERVATIONS

Jason Stock*

NVIDIA Corporation and Colorado State University
stock@colostate.edu

Jaideep Pathak, Yair Cohen, Mike Pritchard, Piyush Garg, Dale Durran,
Morteza Mardani & Noah Brenowitz

NVIDIA Corporation

{jpathak, yacohen, mpritchard, piyushg, ddurran,
mmardani, nbrenowitz}@nvidia.com

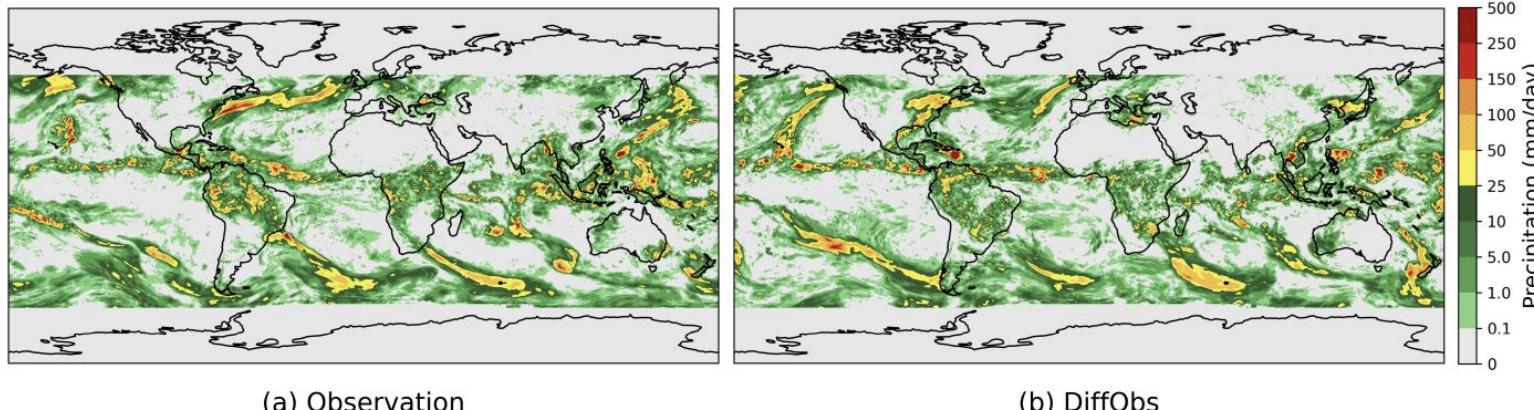
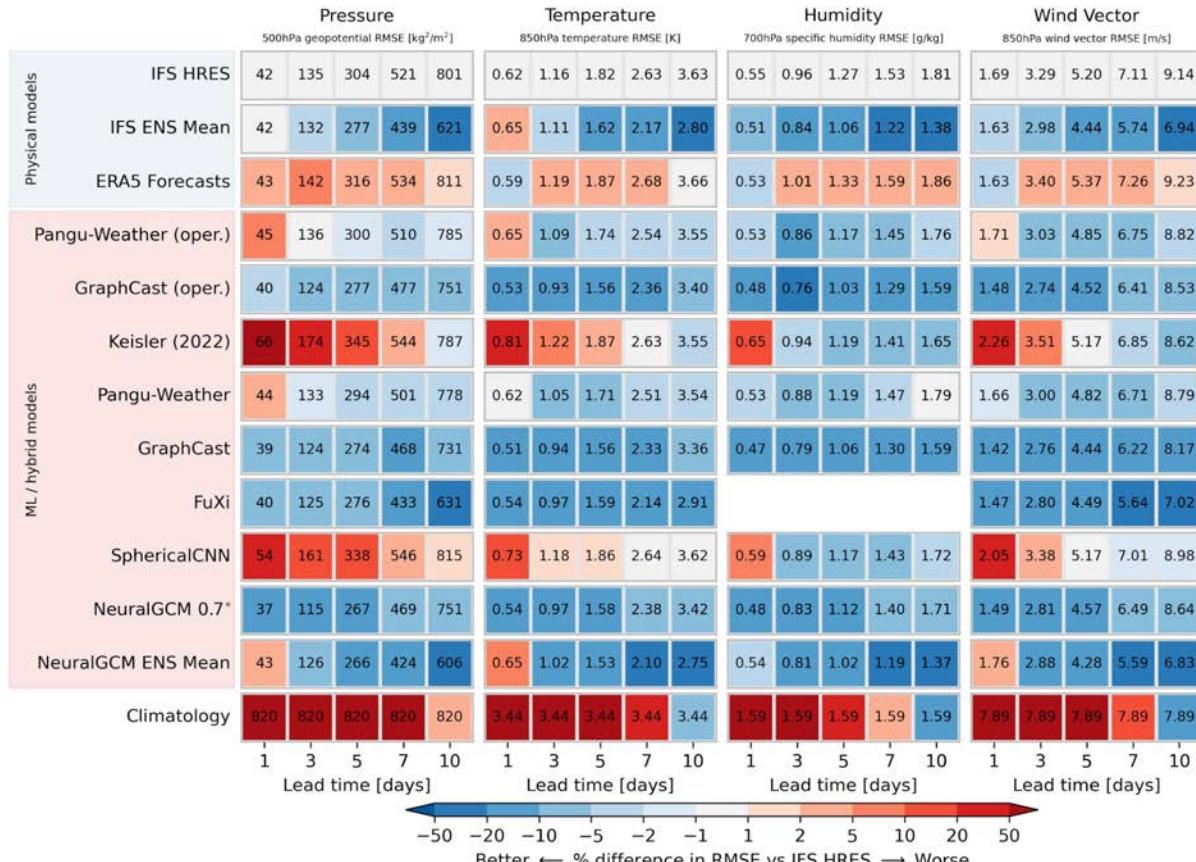


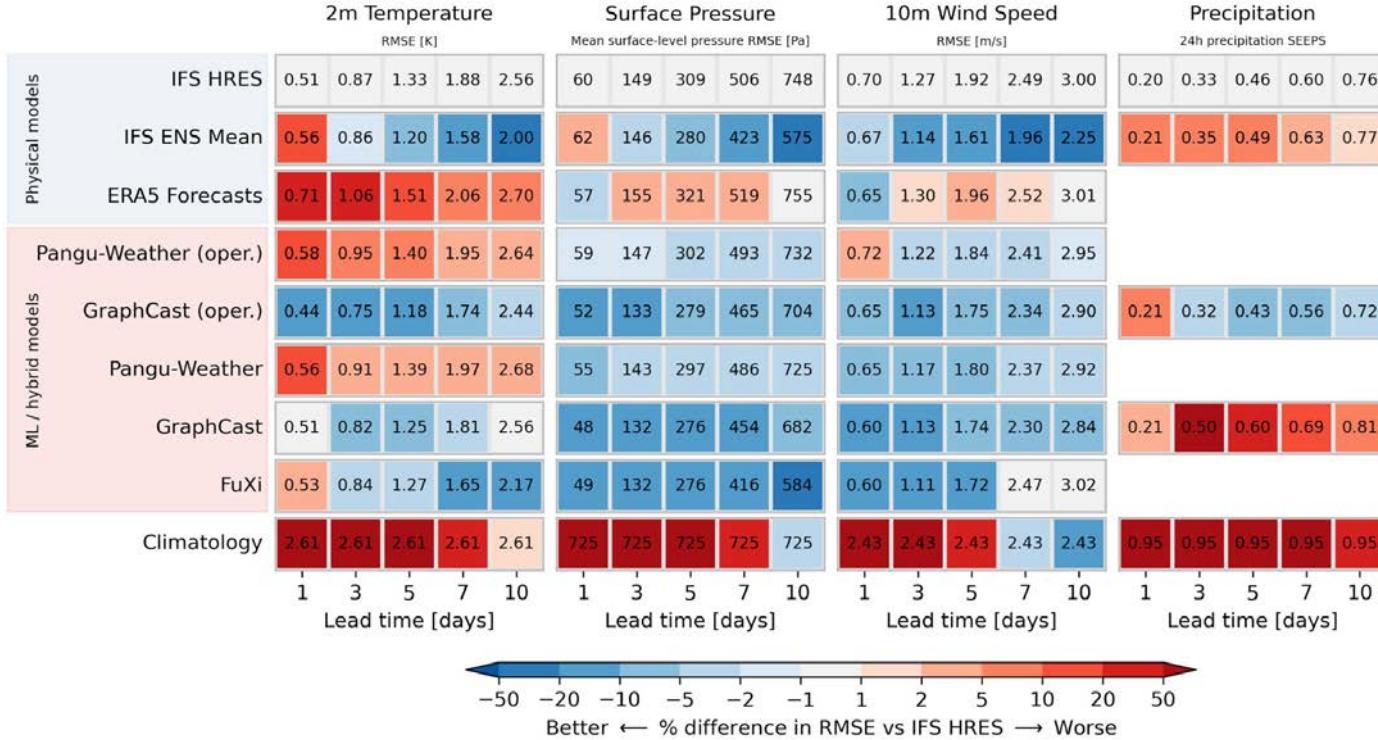
Figure 1: Example 3-day rollout from Oct 27, 2020 as initial condition.

Weatherbench-2



Rasp, S., Hoyer, S., Merose, A., Langmore, I., Battaglia, P., Russel, T., Sanchez-Gonzalez, A., Yang, V., Carver, R., Agrawal, S. and Chantry, M., 2023. Weatherbench 2: A benchmark for the next generation of data-driven global weather models. *arXiv preprint arXiv:2308.15560*.

Weatherbench-2



Rasp, S., Hoyer, S., Merose, A., Langmore, I., Battaglia, P., Russel, T., Sanchez-Gonzalez, A., Yang, V., Carver, R., Agrawal, S. and Chantry, M., 2023. Weatherbench 2: A benchmark for the next generation of data-driven global weather models. *arXiv preprint arXiv:2308.15560*.

HealPix

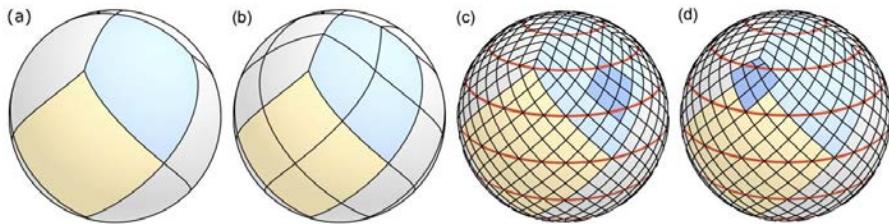


Figure 1: Division of the sphere into twelve faces according to the HEALPix. Four faces to represent either the northern (blue) and southern extratropics, while four more faces arrange around the equator to represent the tropics (yellow). Each face can be subdivided into patches with divisions along the side of each face given by powers of two. The sphere in (a) has a pixel-count of one per face side; we call it `hpx1`. The sphere in (b) counts two pixels per side (`hpx2`), whereas the two spheres in (c) and (d) have eight pixels per side, i.e., `hpx8`. Several latitude lines in red emphasize the iso-latitudinal arrangement of the patches. The saturated blue area depicts a 3×3 stencil, as applied by a standard convolution. To apply the 3×3 stencil at the top corner of the equatorial faces, i.e., stencil position in (d), we fill in the missing corner patch with the average of the values in the two adjacent patches on the extratropical faces.

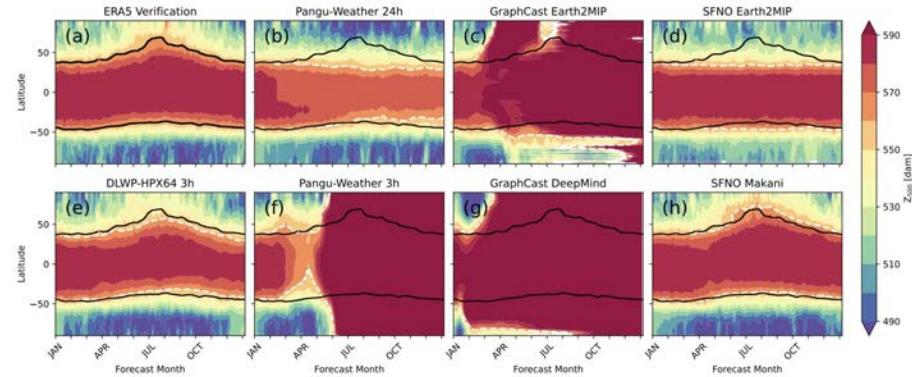


Figure 8: Zonally averaged three-day mean of Z_{500} plotted as a function of time and latitude: (a) for ERA5 reanalysis, (b)-(h) for recursive one-year simulations for each model as identified in the titles, initialized on January 2, 2018. Also shown are 15-day averaged values of the 5600 m contour of Z_{500} for the ERA5 data (black lines) each model simulation (white dashed lines).

Karlbauer, M., Cresswell-Clay, N., Durran, D.R., Moreno, R.A., Kurth, T., Boney, B., Brenowitz, N. and Butz, M.V., 2024. Advancing parsimonious deep learning weather prediction using the HEALPix mesh. *Journal of Advances in Modeling Earth Systems*, 16(8), p.e2023MS004021.

COUPLED OCEAN-ATMOSPHERE DYNAMICS IN A MACHINE LEARNING EARTH SYSTEM MODEL

Chenggong Wang ^{#†}
Princeton University

Michael S. Pritchard ^{*}
NVIDIA

Noah Brenowitz
NVIDIA

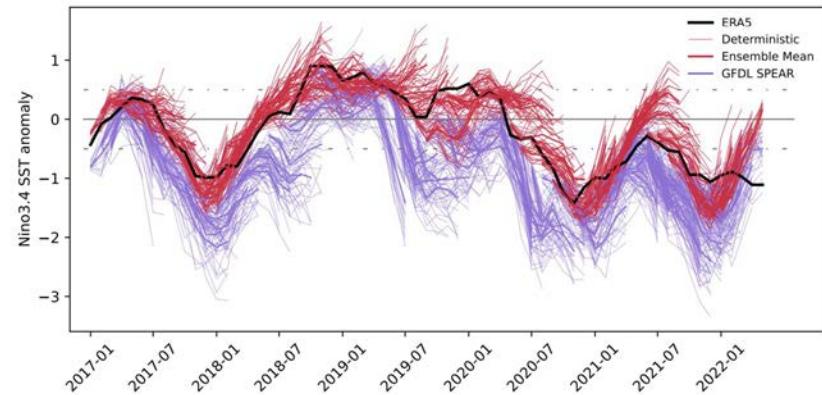
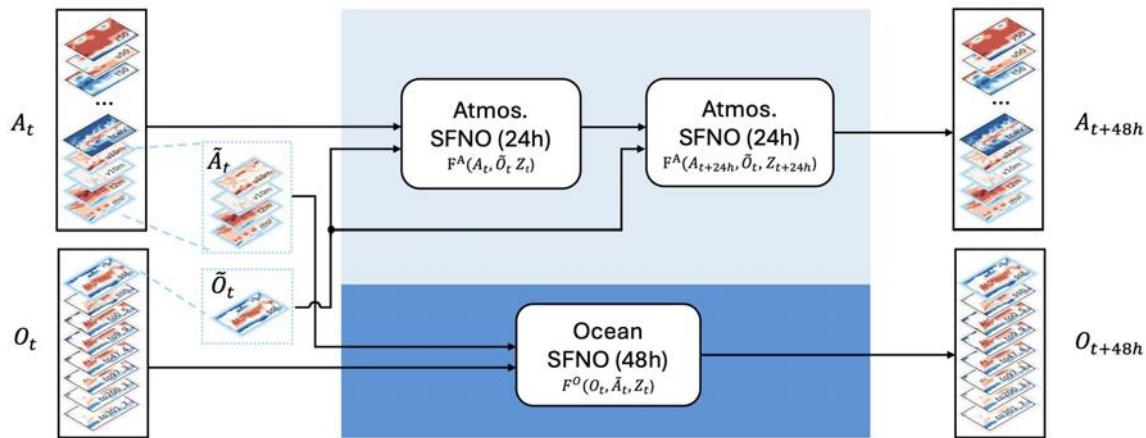
Yair Cohen
NVIDIA

Boris Bonev
NVIDIA

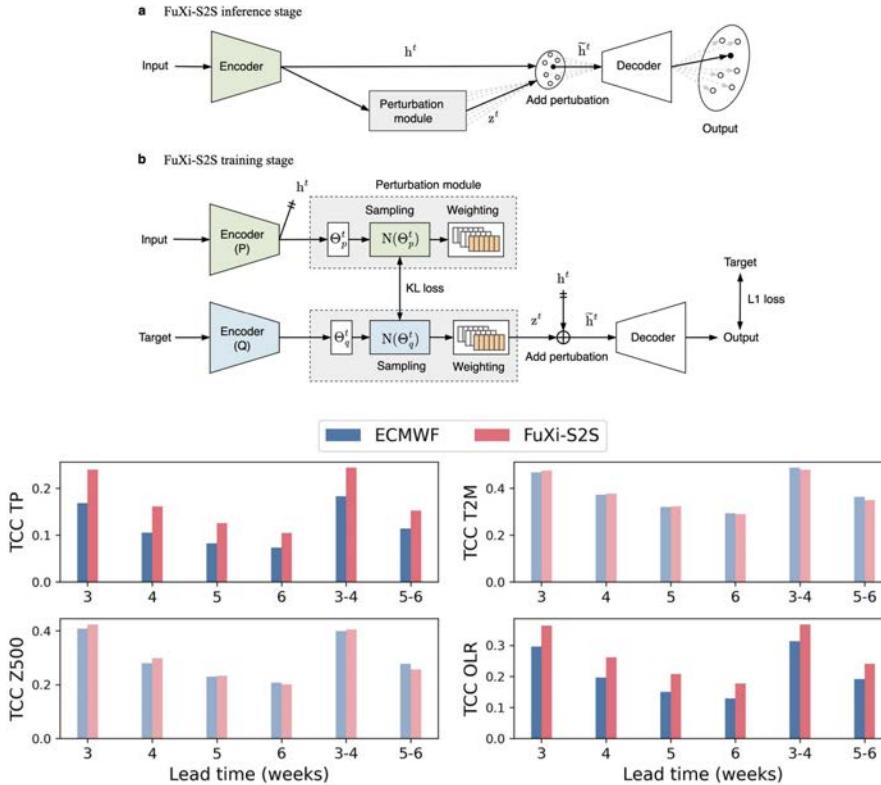
Thorsten Kurth
NVIDIA

Dale Durran
University of Washington
NVIDIA

Jaideep Pathak ^{*}
NVIDIA



Fuxi-S2S



A machine learning model that outperforms conventional global subseasonal forecast models

Received: 7 February 2024

Accepted: 19 July 2024

Published online: 30 July 2024

Check for updates

Lei Chen^{1,2,10}, Xiaohui Zhong^{1,10}, Hao Li^{1,10}, Jie Wu^{3,10}, Bo Lu^{3,4}, Deliang Chen^{2,5}, Shang-Ping Xie^{2,6}, Libo Wu^{2,7,8,9}, Qingchen Chao³, Chensen Lin^{1,2}, Zixin Hu¹ & Yuan Qi^{1,2}

Skillful subseasonal forecasts are crucial for various sectors of society but pose a grand scientific challenge. Recently, machine learning-based weather forecasting models outperform the most successful numerical weather predictions generated by the European Centre for Medium-Range Weather Forecasts (ECMWF), but have not yet surpassed conventional models at subseasonal timescales. This paper introduces Fuxi Subseasonal-to-Seasonal (Fuxi-S2S), a machine learning model that provides global daily mean forecasts up to 42 days, encompassing five upper-air atmospheric variables at 13 pressure levels and 11 surface variables. Fuxi-S2S, trained on 72 years of daily statistics from ECMWF ERA5 reanalysis data, outperforms the ECMWF's state-of-the-art Subseasonal-to-Seasonal model in ensemble mean and ensemble forecasts for total precipitation and outgoing longwave radiation, notably enhancing global precipitation forecast. The improved performance of Fuxi-S2S can be primarily attributed to its superior capability to capture forecast uncertainty and accurately predict the Madden-Julian Oscillation (MJO), extending the skillful MJO prediction from 30 days to 36 days. Moreover, Fuxi-S2S not only captures realistic teleconnections associated with the MJO but also emerges as a valuable tool for discovering precursor signals, offering researchers insights and potentially establishing a new paradigm in Earth system science research.

FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere

Authors: Fenghua Ling^{1†}, Kang Chen^{1†}, Jiye Wu^{2†}, Tao Han¹, Jing-Jia Luo^{2*}, Wanli Ouyang¹, Lei Bai^{1*}

Affiliations:

¹Shanghai AI Laboratory, Shanghai, China

²Institute for Climate and Application Research (ICAR)/ /School of Future Technology /CIC-FEMD, Nanjing University of Information Science and Technology, Nanjing, China

†Equal Contributions,

*Corresponding to baisanshi@gmail.com; jjluo@nuist.edu.cn

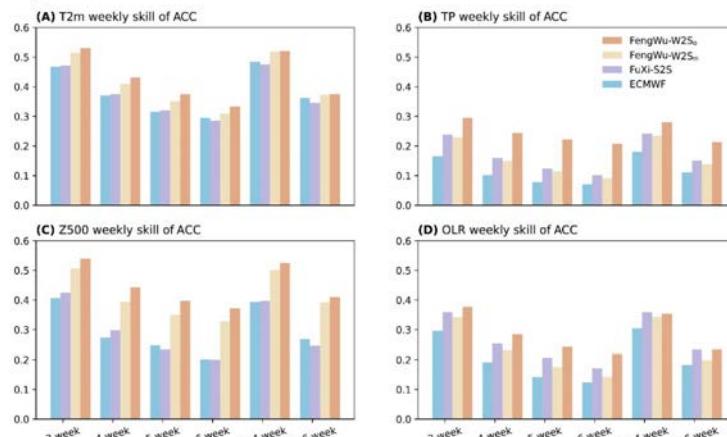
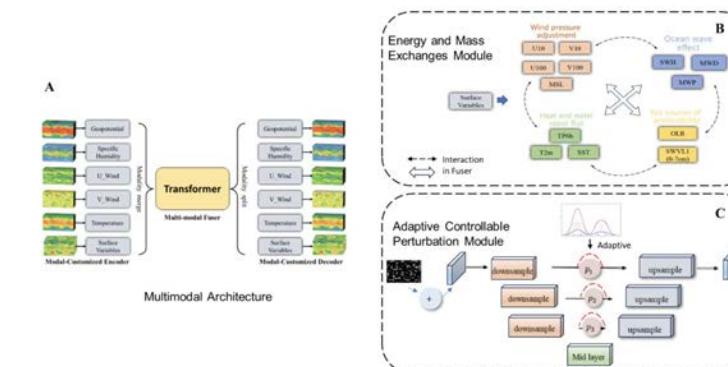


Figure 1 Correlation skills of subseasonal predictions among different models. (A) Predictive skill of 2m air temperature (T2m) anomalies as a function of lead week based on ECMWF (blue bar), Fuxi-S2S (purple bar) and FengWu-W2S forecasts. The skills of FengWu-W2S are assessed based on the anomalies calculated relative to the observed climatology (orange bar) and FengWu-W2S's hindcast climatology (yellow bar), respectively. The prediction skill is validated for the period of 2017–2021. (B, C, D) As in (A), but for the prediction skills of the anomalies of total precipitation (TP), T2m, and geopotential height at 500 hPa (Z500), respectively.



Supplementary Figure 1. The main components of FengWu-W2S. (A) The multimodal architecture of FengWu-W2S, which inherited from FengWu. (B) The surface data is divided into different modules for feature extract and facilitating the exchange of mass and energy between subsystem in the multi-modal fuser by a physically guided way. (C) Multi-level perturbation strategies for different variables that can be controlled manually.

AIFS-CRPS

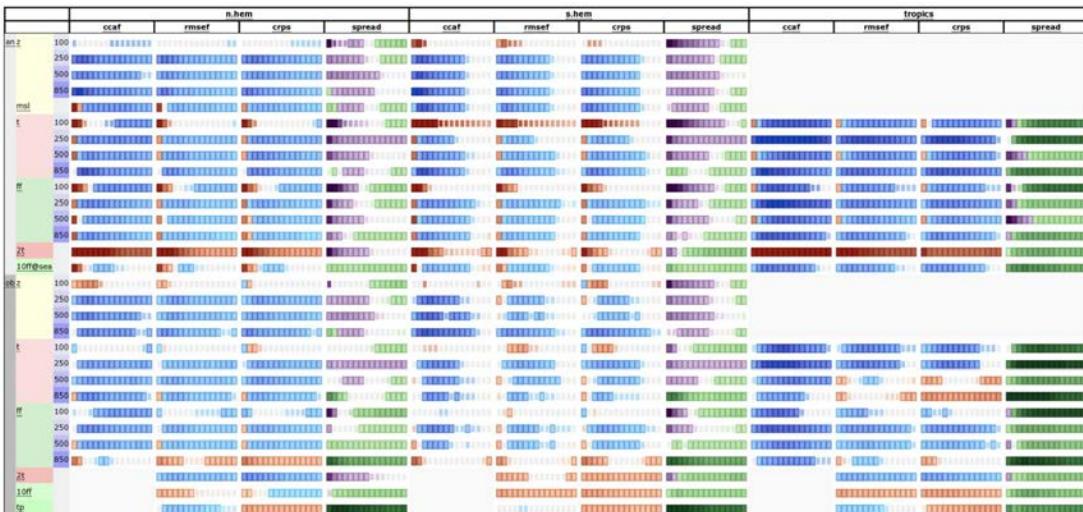
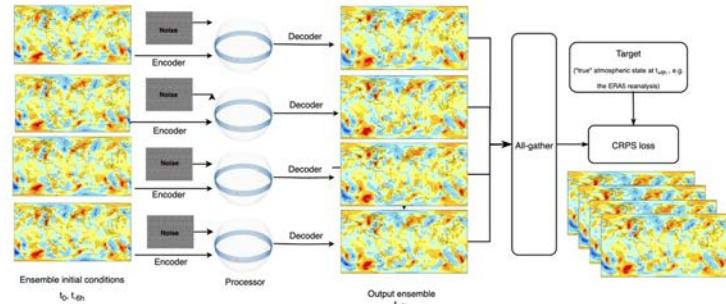


Figure 6: Scorecard comparing forecast scores of AIFS-CRPS O96 ensemble (approximately 1.0° spatial resolution) versus the IFS ensemble (approximately 0.1° spatial resolution), 1 February to 30 September 2024. Forecasts are initialised at 00 and 12 UTC. Shown are relative score changes as function of lead time (day 1 to 15) for northern extra-tropics (n.hem), southern extra-tropics (s.hem) and tropics. Blue colours mark score improvements and red colours score degradations. Purple colours indicate an increase in ensemble standard deviation, while green colours indicate a reduction. Differences that reach 95 % significance level are shown in light shading and differences that reach 99.7 % significance level are shown in dark shading. Variables are geopotential (z), temperature (t), wind speed (ff), mean sea level pressure (msl), 2 m temperature (2t), 10 m wind speed (10ff) and 24 hr total precipitation (tp). Numbers behind variable abbreviations indicate variables on pressure levels (e.g., 500 hPa), and prefix indicates verification against IFS NWP analyses (an) or radiosonde and SYNOP observations (ob). Scores shown are ensemble mean anomaly correlation

AI Quest

MDPI Publishing | Machine Learn. Earth 1 (2025) 603701

<https://doi.org/10.3390/mlearn-4753a0049>

MACHINE LEARNING Earth

CHALLENGES

The AI Weather Quest: an international competition for sub-seasonal forecasting with AI

Oleg Loegel , Joshua Talls , Frederic Vitart , Jöen Hoffmann* and Matthew Chantry

¹ European Centre for Medium-range Weather Forecasts (ECMWF), Bonn, Germany

² ECMWF, Reading, United Kingdom

* To whom any correspondence should be addressed.

E-mail: joe.hoffmann@ecmwf.int

Keywords: sub-seasonal forecasting, sub-seasonal, probabilistic forecasting, forecast verification, open data

Supplementary material for this article is available online.

Abstract
Sub-seasonal forecasting, which involves predicting weather conditions two to six weeks in advance, presents a major challenge for operational centres due to limited predictability from initial or slowly varying boundary conditions. In light of recent advances in artificial intelligence (AI) and machine learning (ML) methods for short-range forecasts (<14 d), the European Centre for Medium-Range Weather Forecasts, with support from the World Meteorological Organisation, has launched the AI Weather Quest: an international, open and scientifically rigorous research competition designed to evaluate AI/ML methods for sub-seasonal forecasting. Targeting participants from a diverse range of organisations including academia, operational forecasting centres, and technology companies, the AI Weather Quest is a pioneering large-scale, multidisciplinary international competition predicting sub-seasonal forecasts through AI and ML. Competitors submit weekly probabilistic forecasts of temperature, minimum and maximum temperatures, precipitation, and mean sea level pressure. Submissions are made in real time, allowing models to be evaluated under operational-like conditions. To foster a competitive environment, an evaluation system has been established that calculates global ranked probability skill scores and displays team performance on five leaderboards. Leading teams will be spotlighted quarterly and yearly, recognising both top-performing teams and innovative methodological contributions. Detailed information regarding registration, forecast submission, and the dedicated tools provided are available on the AI Weather Quest website.

Figure 2. Schematic illustrating the competition structure.

CROSSMARK

OPEN ACCESS

REVIEW

EDITORIAL

ARTICLE

NOTICE

ERRATUM

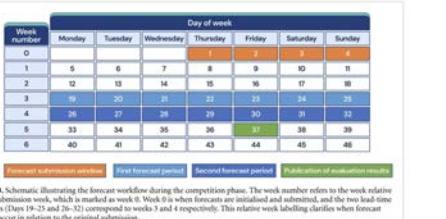


Figure 3. Schematic illustrating the forecast workflow during the competition phase. The week number refers to the week relative to the submission week, which is week 0 in week 0. Week 0 is when forecasts are initialised and submitted, and the two lead-time windows (Days 19–21 and 26–32) correspond to weeks 0 and 4 respectively. This relative week labelling clarifies when forecast targets occur in relation to the original submission.

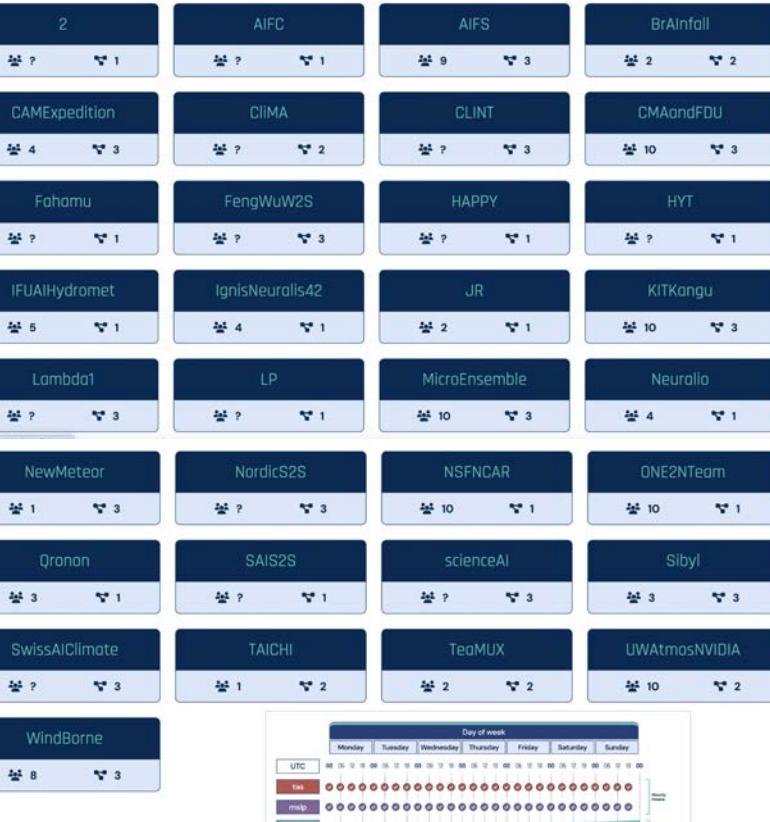


Figure 4.

Schematic illustrating the data sampling frequency for tau, msp, and pr.

Forecast evaluation datasets

All forecasts will be evaluated against initial ECMWF Reanalysis version 5 (ERA5) release data (ERA5).

For temperature and pressure

Forecasts will be evaluated against weekly averages computed from six-hourly data (0, 6, 12, and 18 UTC).

For precipitation

Forecasts will be evaluated against weekly accumulations derived from hourly data.

Forecast evaluation tools

To ensure transparency and replicability of the evaluation techniques used, participants can download the evaluation code and evaluate their forecasts using the [AI-WQ-package](#) Python package:

- `retrieve_evaluation_data.py` retrieves the required datasets including observations and climatological quintile boundaries.
- `forecast_evaluation.py` computes evaluation metrics.

The evaluation code should enable participants to self-assess their forecasts without competitive pressure during the [Testing JJA period](#), which begins on 15 May 2025.

BrAlnfall

2

AIFC

9

AIFS

2

BrAlnfall

4

CAMExpedition

?

CLIMA

3

CMaandFDU

10

Fahamu

?

HAPPY

1

HYT

5

IFUAIHydromet

?

JR

2

KITKangu

4

IgnisNeuralis42

?

Lambda1

3

LP

10

MicroEnsemble

?

Neuralio

4

NewMeteor

1

NordicS2S

?

NSFNCAR

10

ONE2NTeam

3

Qronon

?

SAIS2S

1

scienceAI

3

Sibyl

?

SwissAIClimate

3

TAICHI

2

TecMUX

?

UWAtmosNVIDIA

10

WindBorne

8

?

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

00

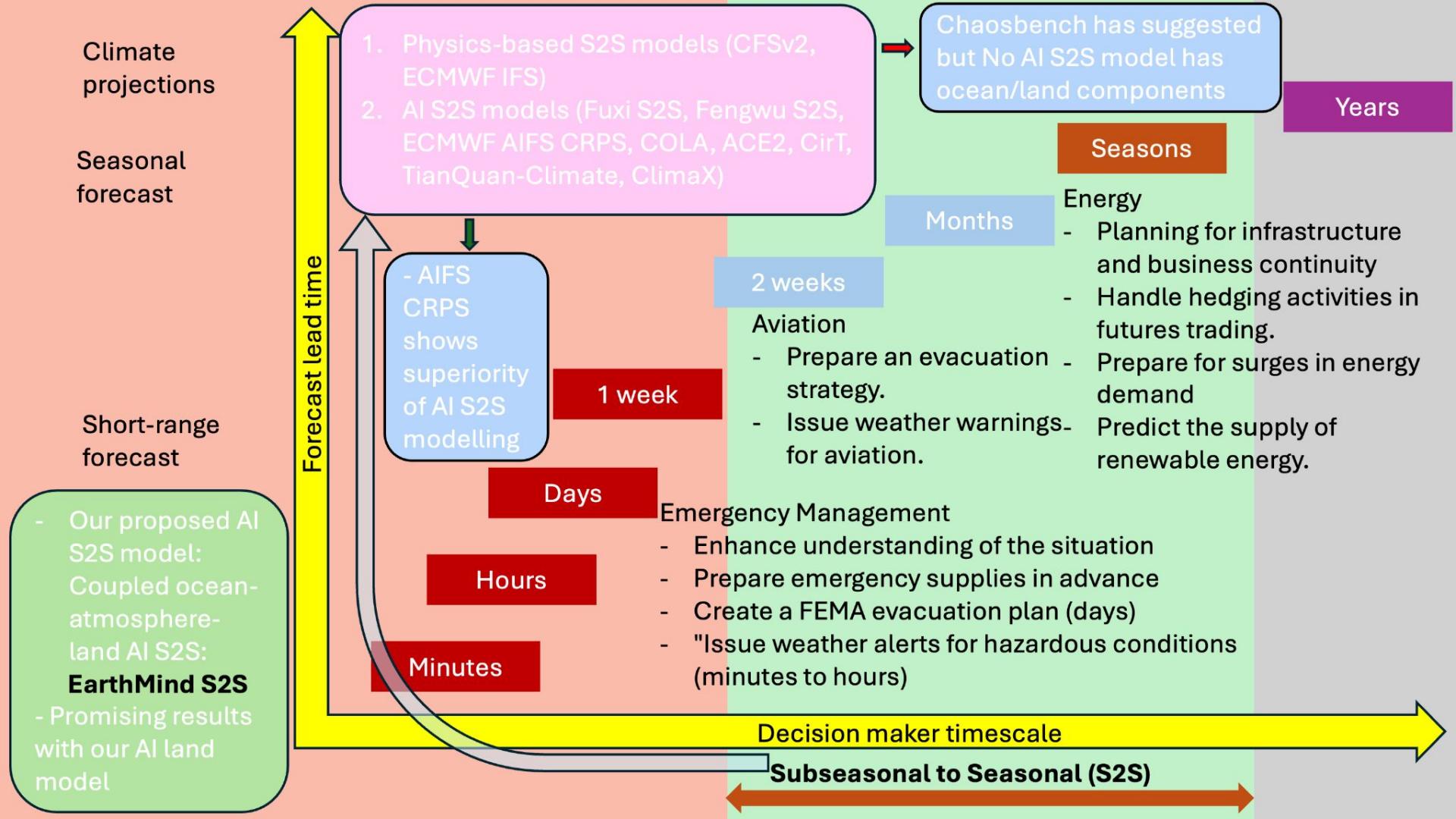
00

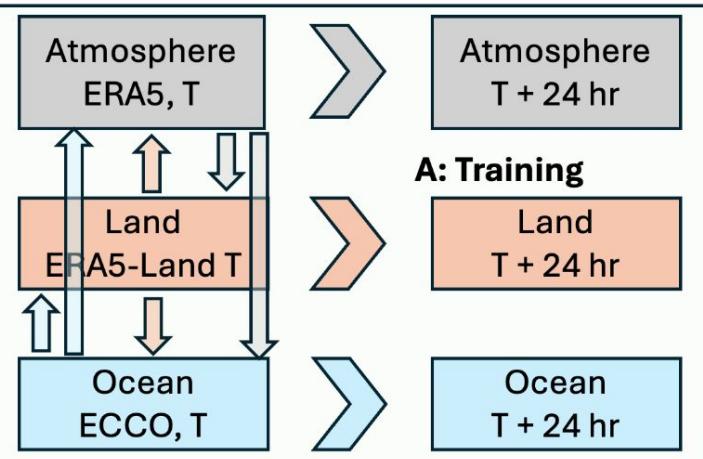
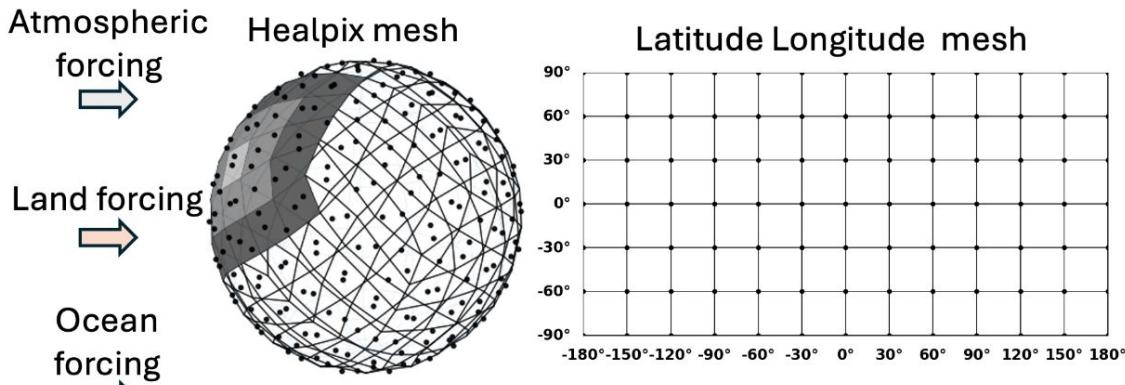
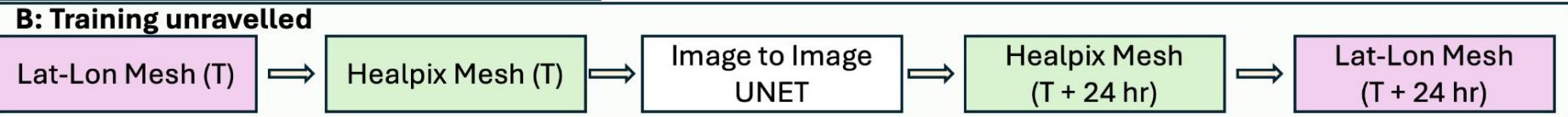
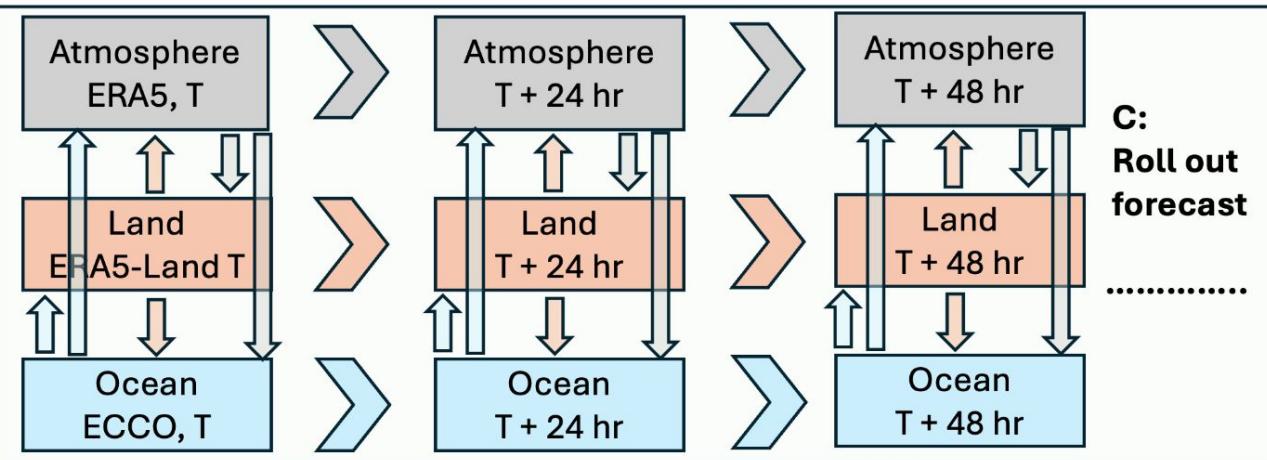
00

00

00

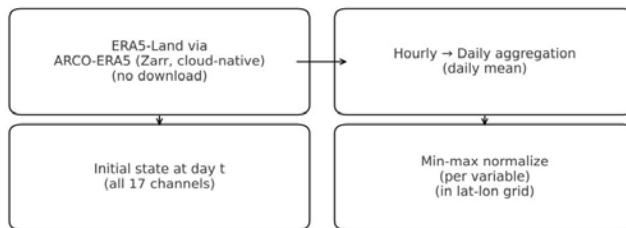
0



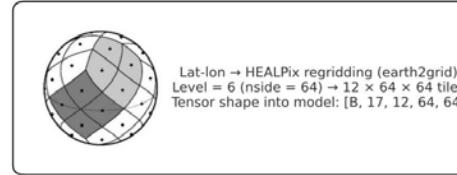


AI-Land (HEALPix-U-Net) Pipeline

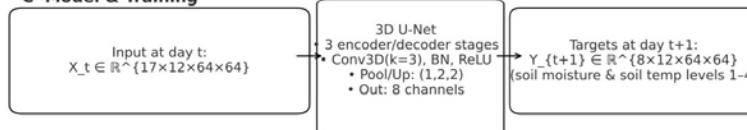
A Data & Preprocessing



B Grid: HEALPix Level 6

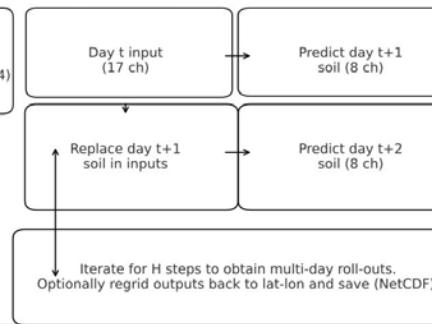


C Model & Training



Training objective: learn $f: X_t \rightarrow Y_{\{t+1\}}$
 Loss: MSE Optimizer: Adam (lr=1e-3) Epochs per (t→t+1) pair: 10
 Daily pairs from year; normalization stats fixed; tiles stay in HEALPix space

D Roll-out Forecasting



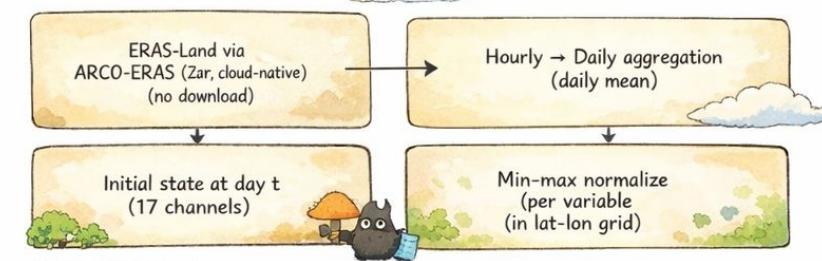
E Input Variables & Normalization (min-max, lat-lon space)

Variable (min → max)	Variable (min → max)	Variable (min → max)
2m_temperature: 188 → 327	skin_temperature: 186 → 348	volumetric_soil_water_layer_4: -2.98e-08 → 0.766
total_precipitation: -3.73e-09 → 0.101	snowfall: -4.66e-10 → 0.0157	soil_temperature_level_1: 196 → 340
10m_u_component_of_wind: -281 → 133	mean_sea_level_pressure: 9e+04 → 1.1e+05	soil_temperature_level_2: 201 → 322
10m_v_component_of_wind: -159 → 167	volumetric_soil_water_layer_1: -0.0314 → 0.79	soil_temperature_level_3: 198 → 317
surface_solar_radiation_downwards: -6 → 4.89e+06	volumetric_soil_water_layer_2: -0.0204 → 0.788	soil_temperature_level_4: 181 → 315
evaporation: -0.00283 → 0.000733	volumetric_soil_water_layer_3: -0.0227 → 0.784	

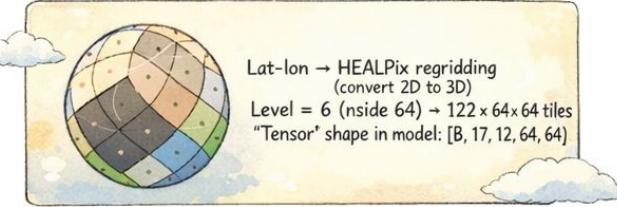
All inputs normalized in lat-lon using fixed min/max, then regressed to HEALPix L6. Model predicts next-day soil variables; predictions are fed back for roll-outs.

AI-Land (HEALPix-U-Net) Pipeline

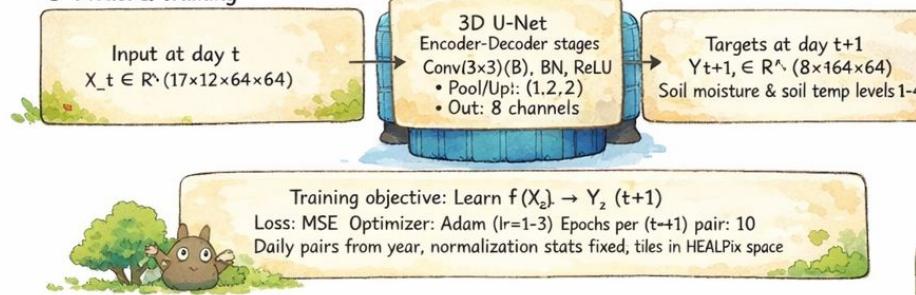
A Data & Preprocessing



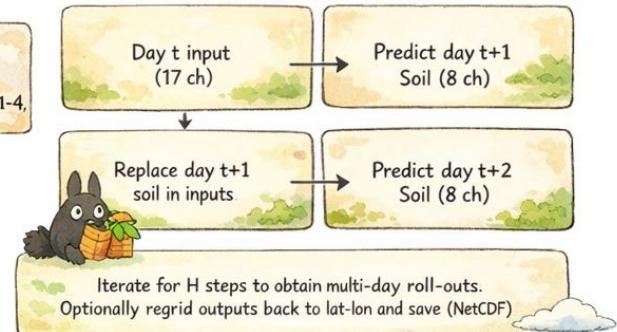
B Grid: HEALPix Level 6



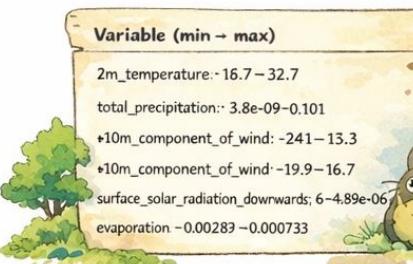
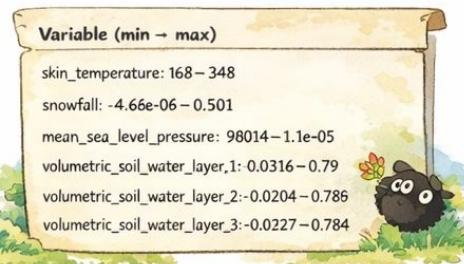
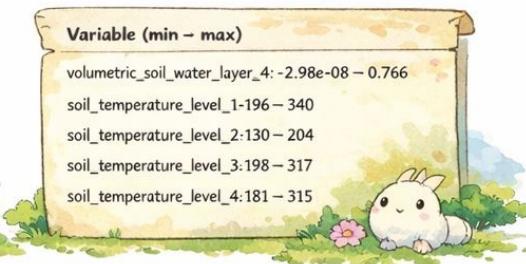
C Model & Training



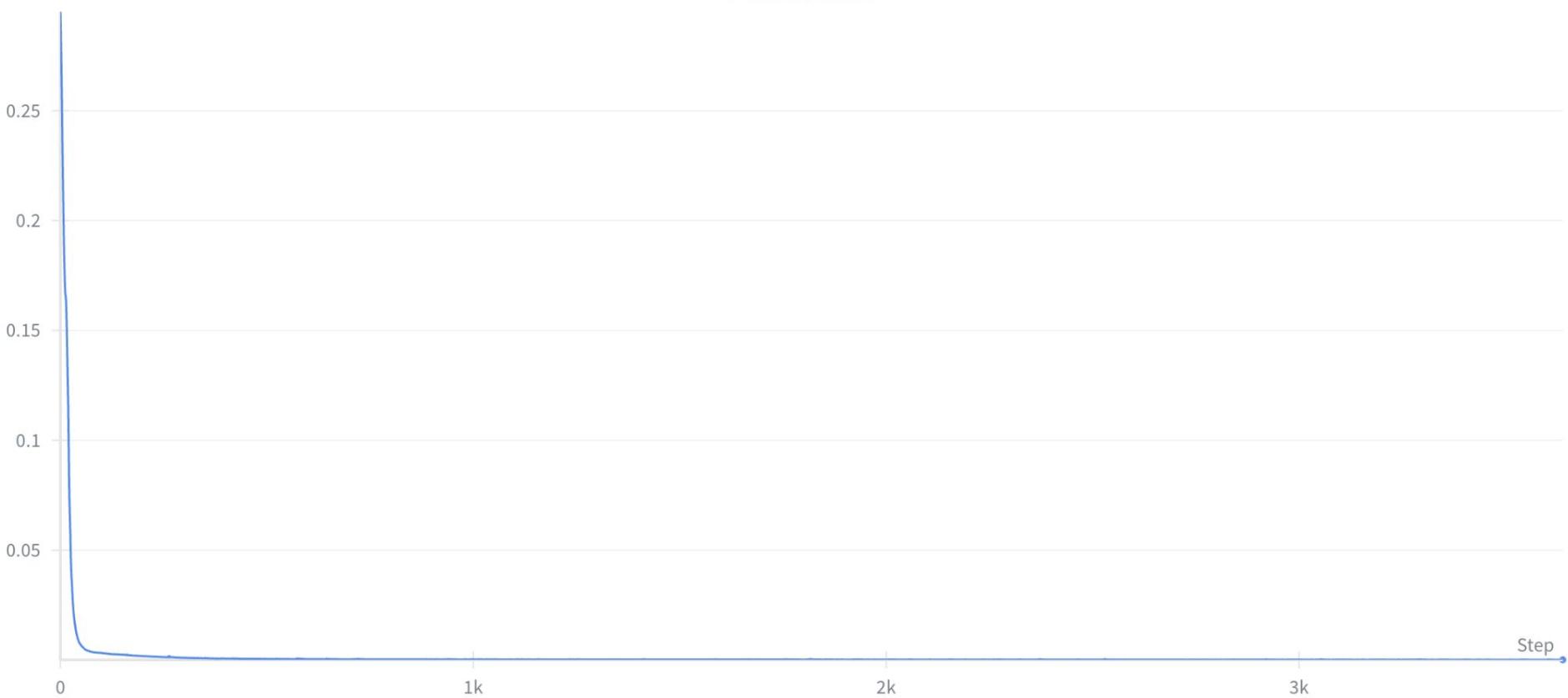
D Roll-out Forecasting

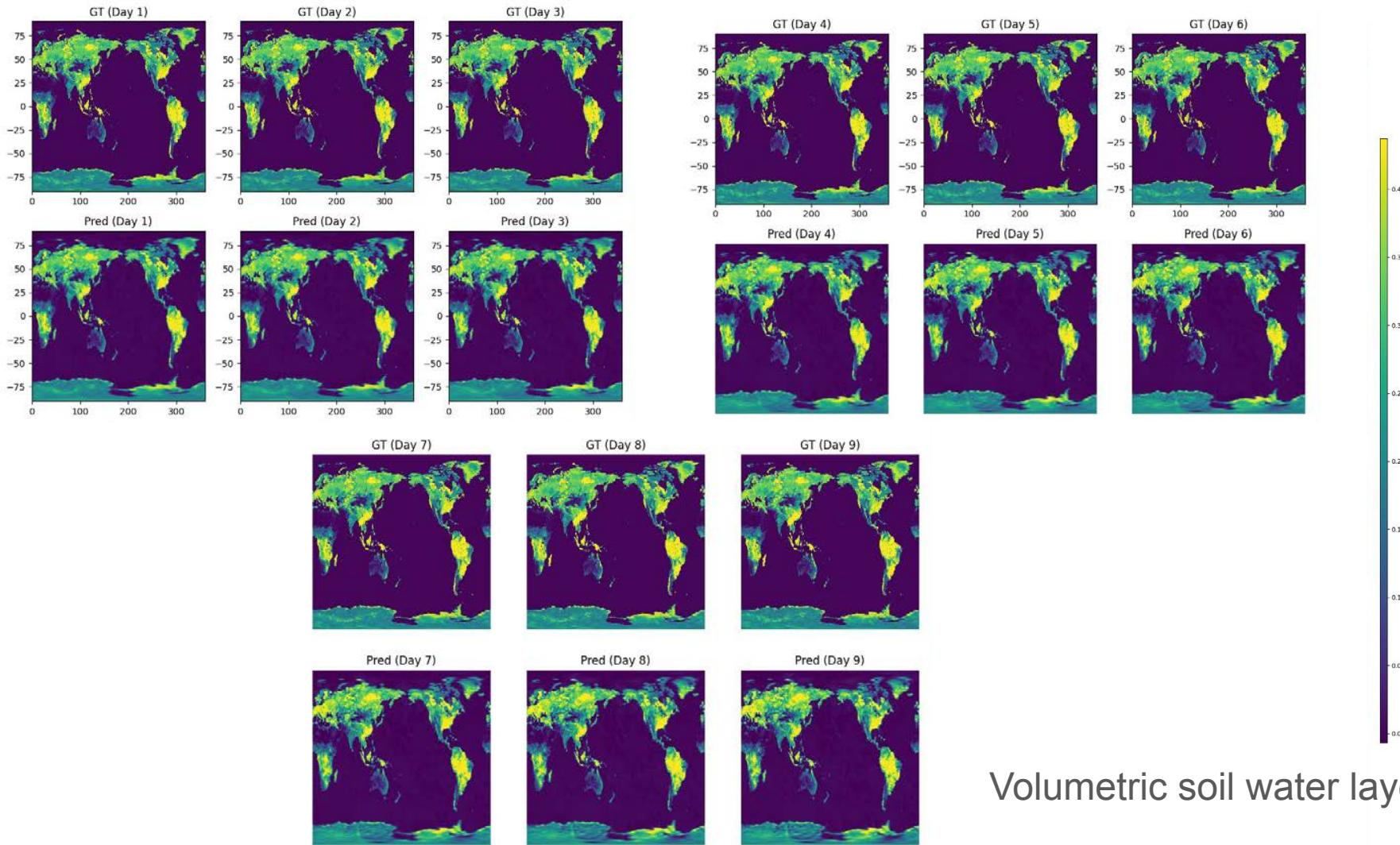


E Input Variables & Normalization (min-max, lat-lon space)

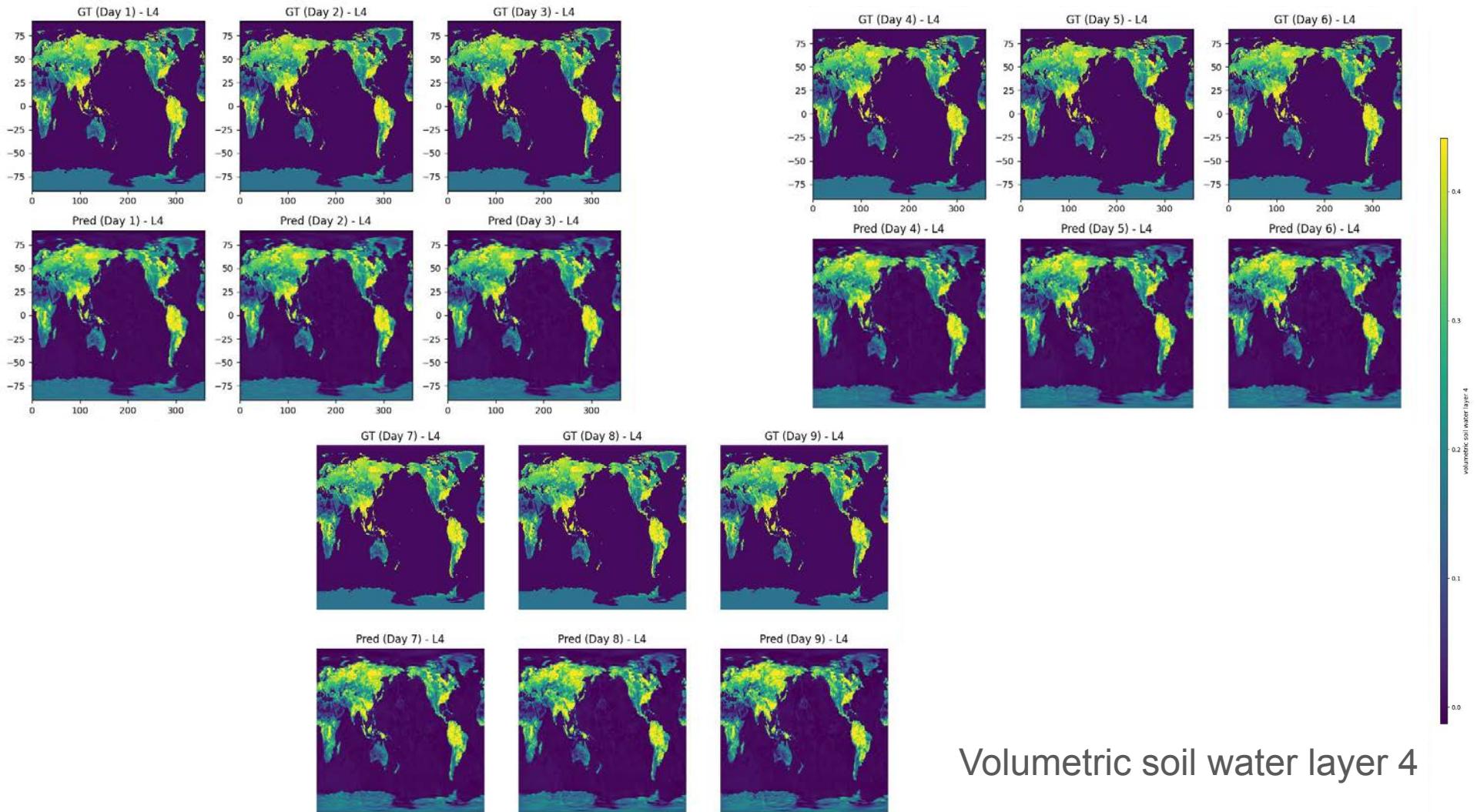


eval_loss
autumn-cherry-1

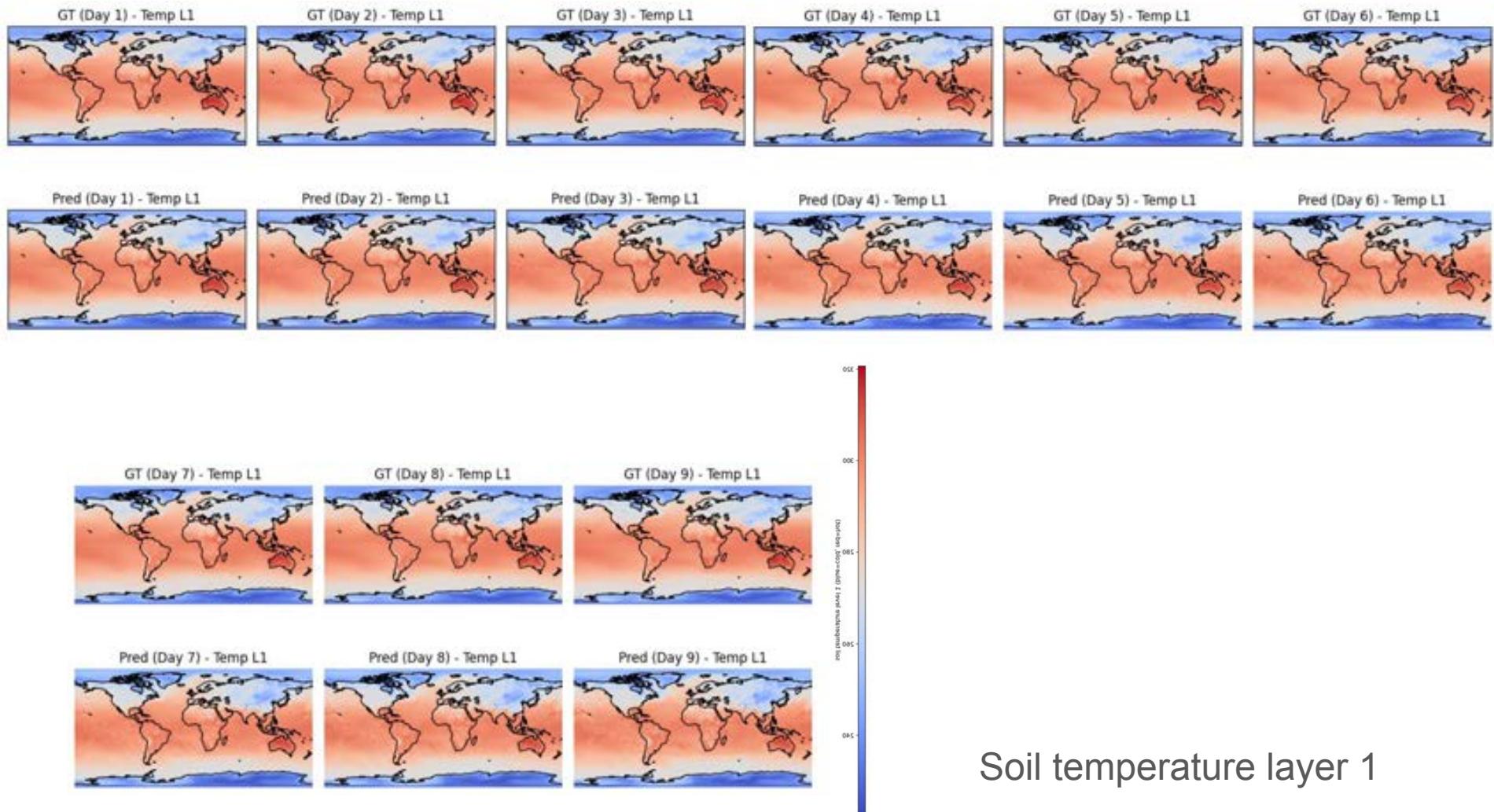


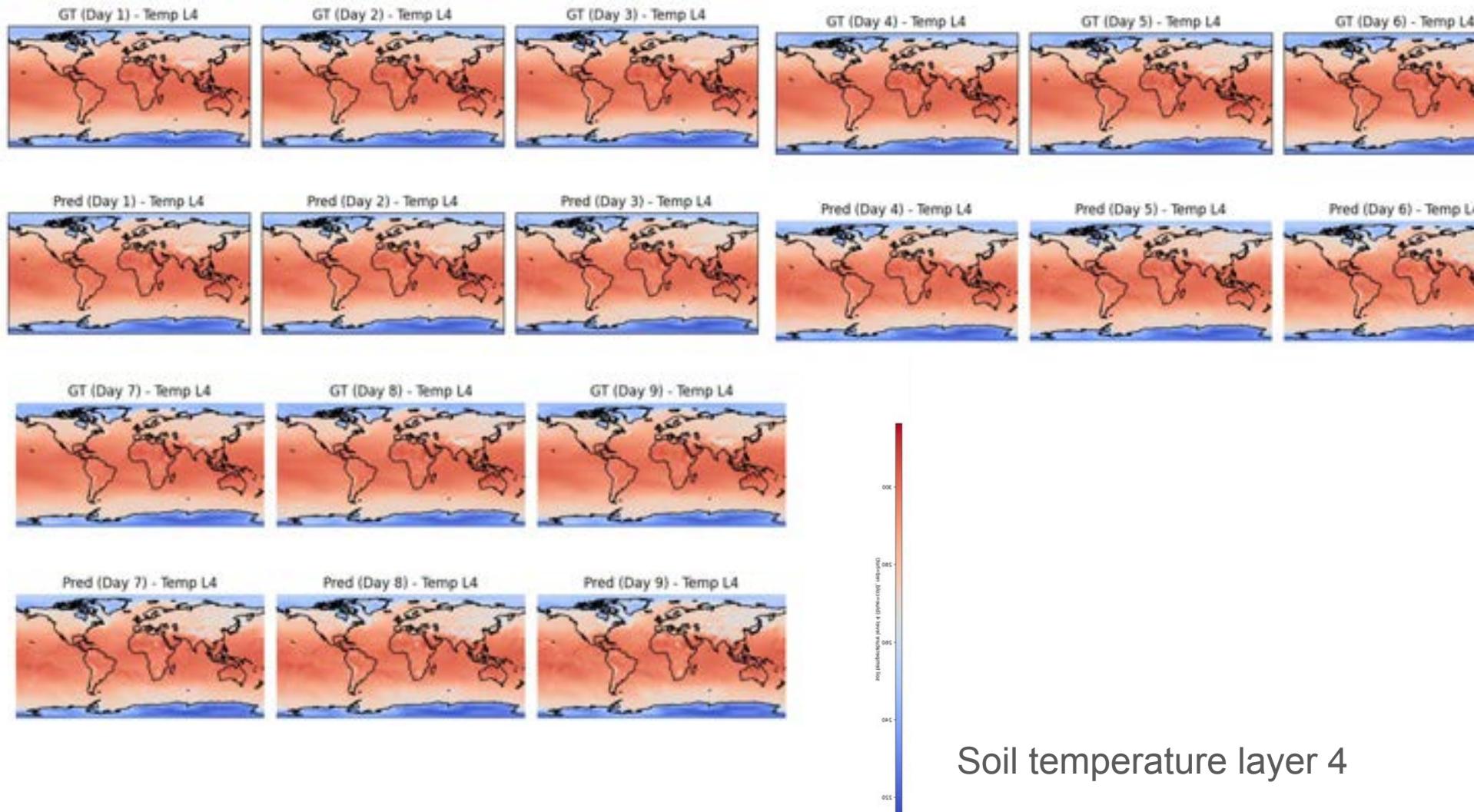


Volumetric soil water layer 1



Volumetric soil water layer 4





Wet land event: 2019 Midwest / Mississippi Basin flooding

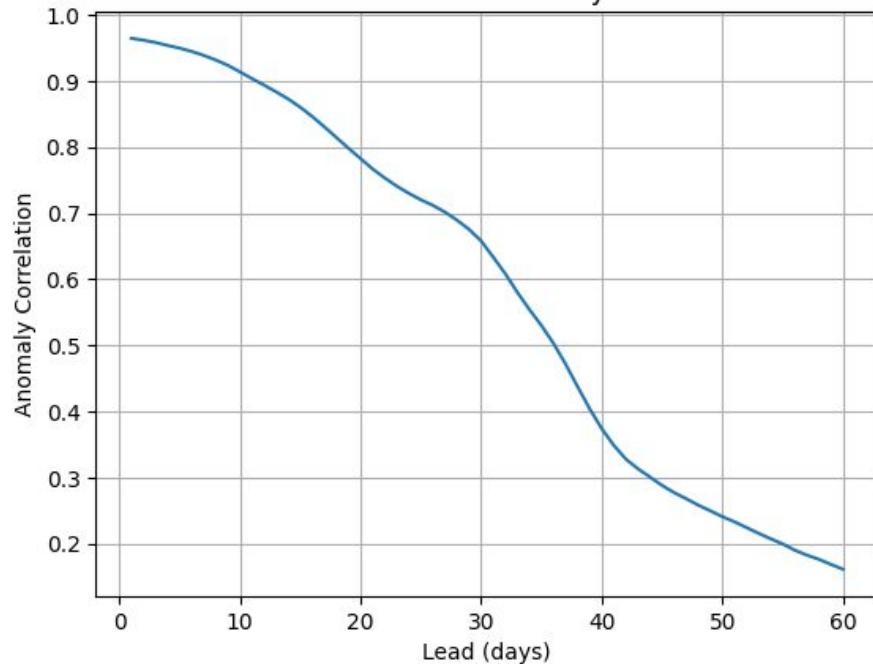
2019031500 IC

US box (CONUS-ish)

lat_slice = slice(50, 25)

lon_slice = slice(-125, -65)

ACC: Soil moisture layer 1

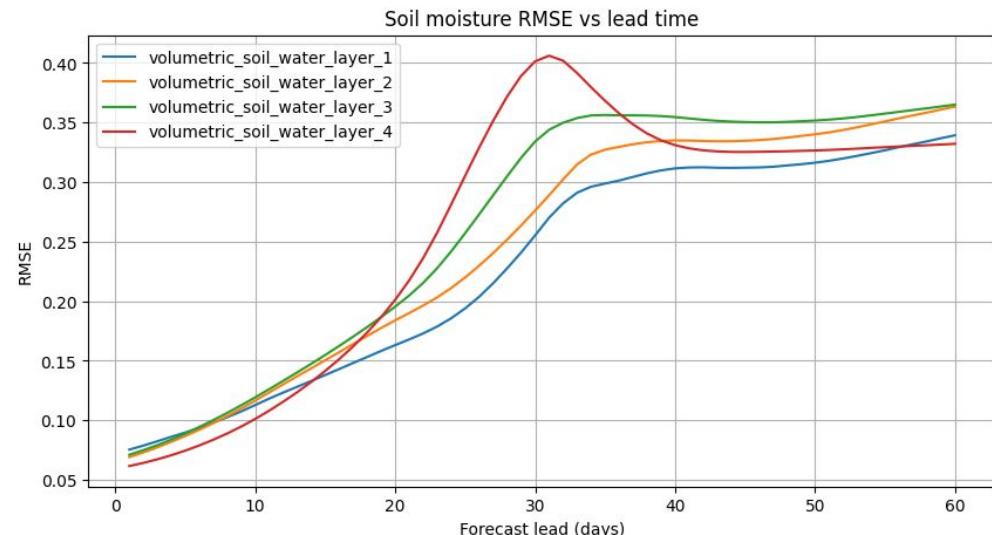


Flooding in the Mississippi River Basin during the winter, spring, and summer of 2019 caused at least 12 deaths and economic losses in 19 states totaling in excess of \$20 billion. Estimated damages in the Midwestern United States alone had reached \$12.5 billion by April 2019.

Wikipedia

https://en.wikipedia.org/w/index.php?title=Mississippi_River_floods_of_2019&oldid=900000000

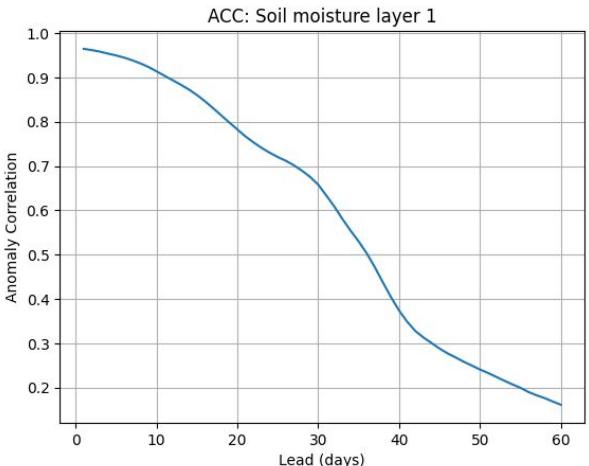
[Mississippi River floods of 2019 - Wikipedia](#)



2012 Central US drought

2012051500 IC

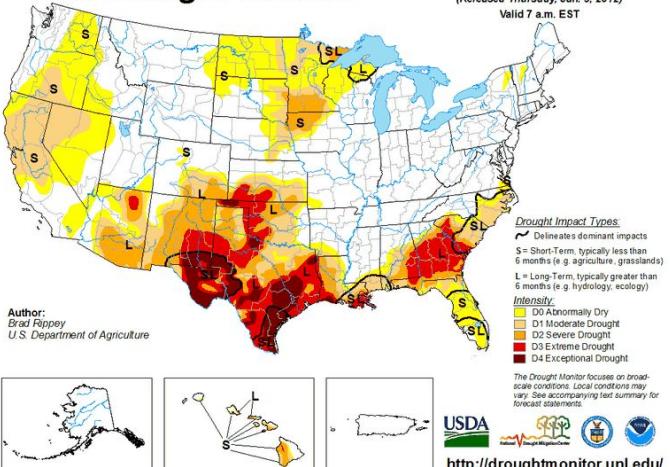
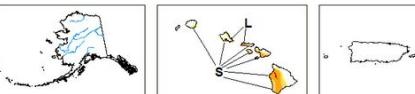
The 2012 Central US drought, one of the worst on record, caused massive losses, with estimates ranging from **\$30 billion to over \$35 billion in agricultural damage alone**, impacting corn and soybean yields significantly and raising food prices. The overall economic impact on the U.S. GDP was potentially 0.5-1%, or \$75-\$150 billion, making it one of the costliest U.S. weather disasters, with lingering effects on livestock feed and food costs.



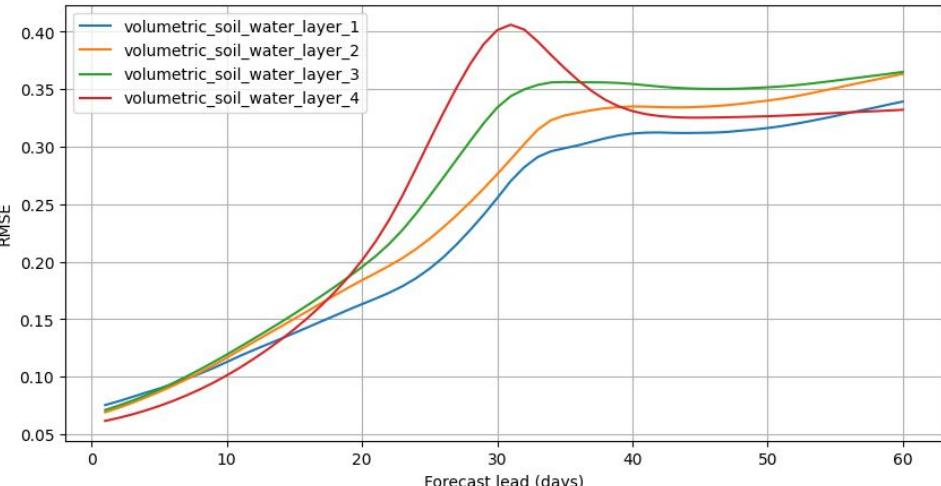
U.S. Drought Monitor

January 3, 2012
(Released Thursday, Jan. 5, 2012)

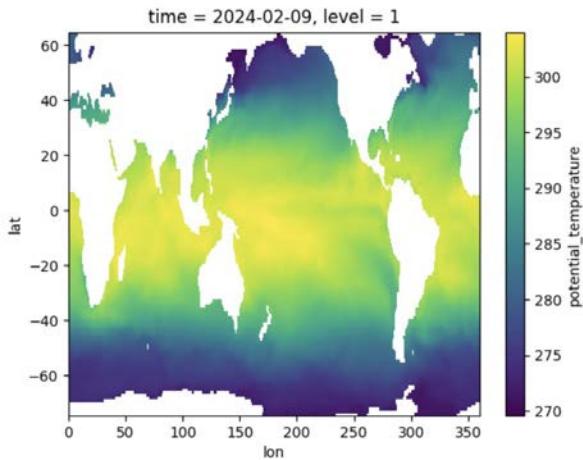
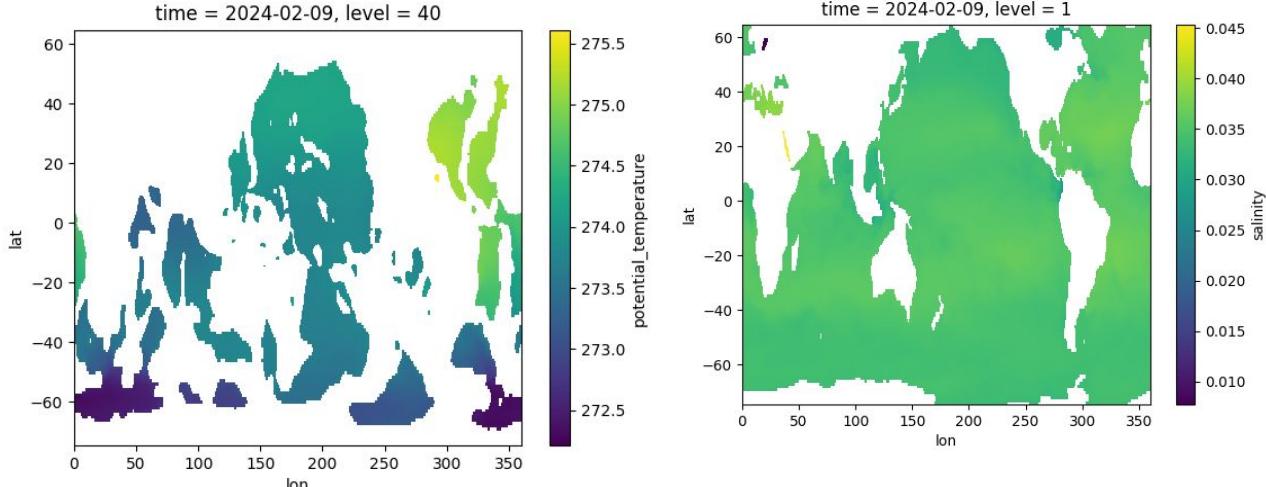
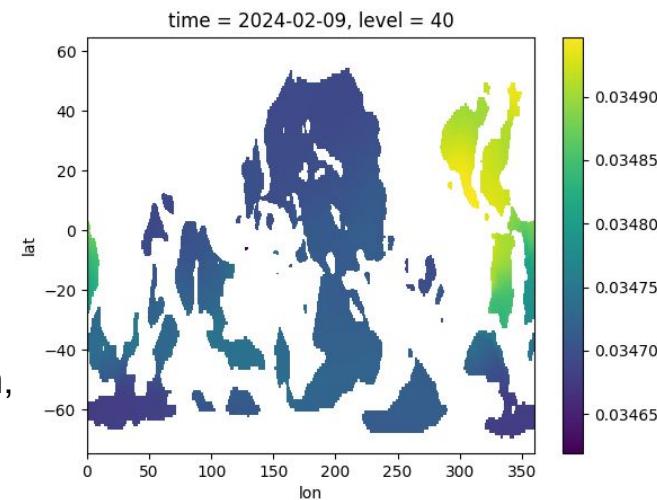
Valid 7 a.m. EST



<http://droughtmonitor.unl.edu/>



AI Ocean Model



Example of GODAS Pentad Timestamps

Pentad	Days Covered	Timestamp Shown in GODAS
Pentad 1	Jan 1–5	Jan 5
Pentad 2	Jan 6–10	Jan 10
Pentad 3	Jan 11–15	Jan 15
Pentad 4	Jan 16–20	Jan 20

[u10, v10, sw_down, lw_down, t2m, q2m, precip, sp] - Atmospheric forcings from ERA5

Generative Data Assimilation of Sparse Weather Station Observations at Kilometer Scales

Peter Manshausen^{1,2}, Yair Cohen¹, Peter Harrington¹, Jaideep Pathak¹, Mike Pritchard^{1,3}, Piyush Garg¹, Morteza Mardani¹, Karthik Kashinath¹, Simon Byrne¹, Noah Brenowitz¹

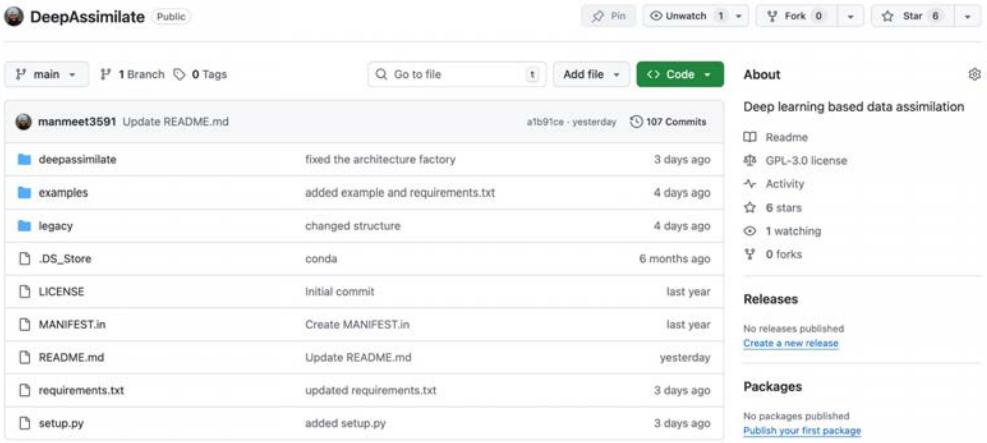
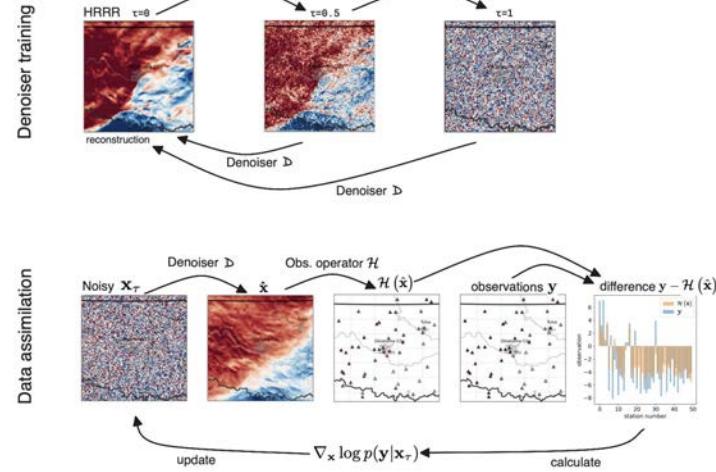
¹NVIDIA, Santa Clara, CA, USA

²University of Oxford, Oxford, UK

³University of California Irvine, Irvine, CA, USA

Key Points:

- We demonstrate data assimilation of weather station data to 3km-resolution surface fields with a diffusion model surrogate.
- This opens up a simple, scalable pipeline to create km-scale ensemble reanalyses at low cost and latency, competitive to operational ones.
- The model is easily adapted to new observations, produces states of variables not directly observed, and shows evidence of learned physics.



Precision Agriculture scale soil moisture data

A Concept

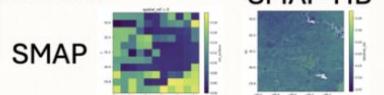
1. A generative diffusion model learns SMAP-HydroBlocks-like soil-moisture
2. Zero-shot data assimilation using diffusion produces 30 m, 6-hourly soil moisture.

B Training data & coverage

Target (train): SMAP-HydroBlocks, Kentucky, 30 m, $\Delta t=6$ h, 2015–2019

Coarse products: SMAP L4, 9 km, $\Delta t=6$ h (2015–2019)

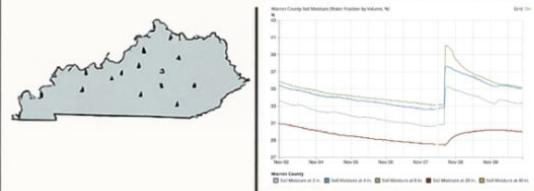
Static predictors: soil properties, elevation



C Pipeline

Cube extraction (30 m, $64 \times 64 \times T$, e.g., $T=4$ steps) \rightarrow Normalize/mask \rightarrow Unconditional diffusion training $p_\theta(X)$ (3D denoiser on $x-y-t$) \rightarrow Inference init (noise cube) \rightarrow Apply forward ops H over time (e.g., per-step 9 km \rightarrow 30 m) \rightarrow Guided denoising with $\nabla_x \log p(Y|H(X))$ across the cube (zero-shot DA) \rightarrow Sample N ensemble cubes \rightarrow Stitch cubes in space/time \rightarrow Ensemble mean/spread, PI coverage \rightarrow Metrics vs SMAP-HB & stations > 30 m, 6-hourly outputs.

F Kentucky Mesonet Validation



E Performance / Robustness

Power Spectral Density (PSD): compare texture/scale fidelity for *Held-out SMAP-HB (GT)* vs *Prior (unguided)* vs *Guided (zero-shot DA)*.
Accuracy metrics: R^2 (higher better), **ubRMSE** (lower), **Bias** (closer to 0).

G Uncertainty & ensembles

Montage	Sharpness
Mean/Spread	Rank histogram
Reliability	CRPS

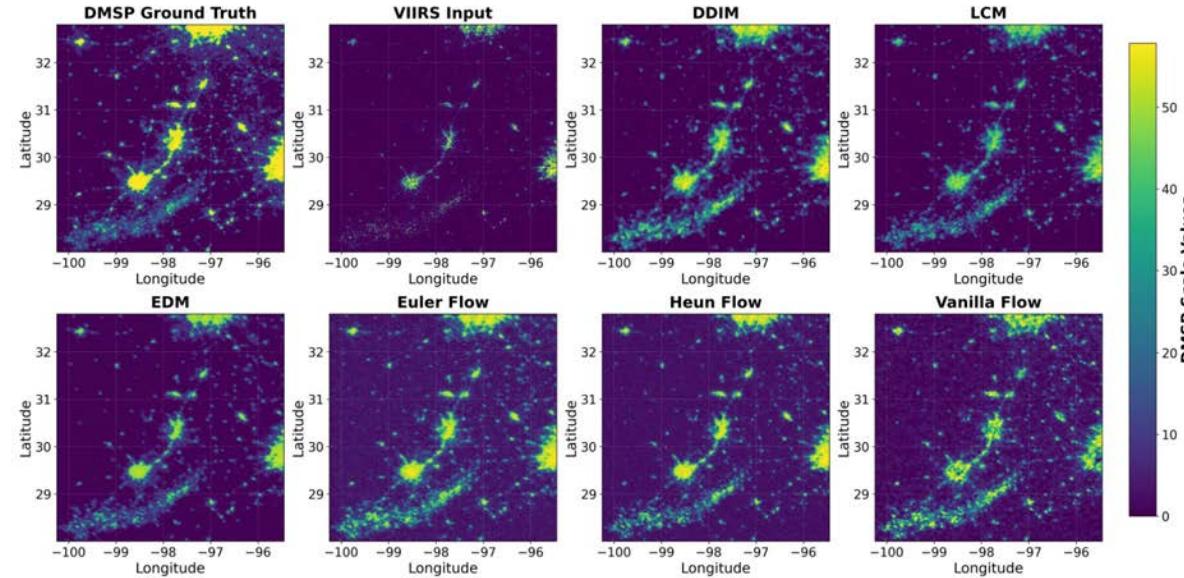
H Generalization and OOD

OOD-Region: a different Kentucky Mesonet county

OOD-Time: a later year (e.g., 2020) over WKU Farm

OOD-Sensor: new sensors on WKU Farm

Diffusion and its derivatives everywhere



Method	SSIM	PSNR	MAE	MSE	RMSE	Inference Time
DDIM	0.6158	21.9123	0.0438	0.0064	0.0802	156.79s
LCM	0.6491	20.6988	0.0506	0.0085	0.0923	16.36s
EDM	0.5141	20.2804	0.0539	0.0094	0.0968	315.84s
Euler Flow	0.2247	19.7997	0.0757	0.0105	0.1023	154.56s
Heun Flow	0.2233	20.3246	0.0681	0.0093	0.0963	154.95s
Vanilla Flow	0.3637	20.6182	0.0581	0.0087	0.0931	134.91s
VIIRS	0.4137	12.5146	0.1110	0.05603	0.2367	-

Thank you