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The quiet revolution of numerical

weather prediction

Peter Bauer!, Alan Thorpe' & Gilbert Brunet?

Advances in numerical weather prediction represent a quiet revolution because they have resulted from a steady
accumulation of scientific knowledge and technological advances over many years that, with only a few exceptions,
have not been associated with the aura of fundamental physics breakthroughs. Nonetheless, the impact of numerical
weather prediction is among the greatest of any area of physical science. As a computational problem, global weather
prediction is comparable to the simulation of the human brain and of the evolution of the early Universe, and it is
performed every day at major operational centres across the world.

posed that the laws of physics could be used to forecast the

weather; they recognized that predicting the state of the atmo-
sphere could be treated as an initial value problem of mathematical
physics, wherein future weather is determined by integrating the gov-
erning partial differential equations, starting from the observed current
weather, This proposition, even with the most optimistic interpretation
of Newtonian determinism, is all the more audacious given that, at that
time, there were few routine observations of the state of the atmosphere,
no computers, and little understanding of whether the weather possesses
any significant degree of predictability. But today, more than 100 years

latiar thic naradiom trandatue inta calving dailie a coctum af nanlinaear

ﬁ t the turn of the twentieth century, Abbe' and Bjerknes® pro-

use of observational information from satellite data providing global
coverage.

More visible to society, however, are extreme events. The unusual
path and intensification of hurricane Sandy in October 2012 was pre-
dicted 8 days ahead, the 2010 Russian heat-wave and the 2013 US cold
spell were forecast with 1-2 weeks lead time, and tropical sea surface
temperature variability following the El Nino/Southern Oscillation phe-
nomenon can be predicted 3-4 months ahead. Weather and climate
prediction skill are intimately linked, because accurate climate predic-

tion needs a good repr ion of her ph and their stat
istics, as the underlying physical laws apply to all prediction time ranges.
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Figure 1| A measure of forecast skill at three-, five-, seven- and ten-day
ranges, computed over the extra-tropical northern and southern
hemispheres. Forecast skill is the correlation between the forecasts and the
verifying analysis of the height of the 500-hPa level, expressed as the anomaly
with respect to the climatological height. Values greater than 60% indicate
useful forecasts, while those greater than 80% represent a high degree of
accuracy. The convergence of the curves for Northern Hemisphere (NH) and
Southern Hemisphere (SH) after 1999 indicates the breakthrough in exploiting

satellite data through the use of variational data'®.

Bauer, P., Thorpe, A. and Brunet, G., 2015. The quiet revolution of numerical weather prediction. Nature, 525(7567), pp.47-55.



Deep Learning for Weather Prediction (DLWP)
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Weyn, J.A., Durran, D.R. and Caruana, R., 2019. Can machines learn to predict weather? Using deep learning to predict gridded 500-hPa
geopotential height from historical weather data. Journal of Advances in Modeling Earth Systems, 11(8), pp.2680-2693.



DLWP Cubed Sphere
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Weyn, J.A., Durran, D.R. and Caruana, R., 2020. Improving data-driven global weather prediction using deep convolutional neural networks
on a cubed sphere. Journal of Advances in Modeling Earth Systems, 12(9), p.e2020MS002109.



Deep learning for global precipitation prediction

e DLWP and DLWP-CS use temperature at 850 hPa and geopotential at 500
hPa to show comparable and improved performance w.r.t operational models.

e DLWP and DLWP-CS use global domain for data-driven weather forecasting.

e Previous studies either use limited regions, do not consider spherical
distortion, use fields simpler to simulate relative to precipitation, do not
compare with operational forecasts or do not use CNNs limiting their
capability to capture spatial patterns.

e Need for a system dedicated to global precipitation forecasts which can be
considered a digital twin of the real system.



Modified DLWP-CS

Transforms DLWP-CS from a temporal mapping to a function simulating

precipitation from different fields

Singh, M., Acharya, N., Patel, P., Jamshidi, S.,
Yang, Z.L., Kumar, B., Rao, S., Gill, S.S.,
Chattopadhyay, R., Nanjundiah, R.S. and Niyogi,
erecipirettan (Lat-Lon) D., 2023. A modified deep learning weather
. B i prediction using cubed sphere for global
Conventional method Bt 2 precipitation. Frontiers in Climate, 4, p.1022624.
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WeatherBench

Weatherbench dataset corresponding to total cloud cover and two meter air
temperature as precursors and precipitation as the label/target. Training:
1979-2009, Validation: 2010-2011, Testing: 2012-2015. Temporal resolution: hourly

Total Cloud Cover Surface air temperature Precipitation
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Rasp, S., Dueben, P.D., Scher, S., Weyn, J.A., Mouatadid, S. and Thuerey, N., 2020. WeatherBench: a benchmark
data set for data-driven weather forecasting. Journal of Advances in Modeling Earth Systems, 12(11),
p.e2020MS002203.



Median of Day-1 precipitation

Ground Truth

Singh, M., Acharya, N., Patel, P., Jamshidi, S.,
Yang, Z.L., Kumar, B., Rao, S., Gill, S.S.,
Chattopadhyay, R., Nanjundiah, R.S. and Niyogi,
D., 2023. A modified deep learning weather
prediction using cubed sphere for global
precipitation. Frontiers in Climate, 4, p.1022624.
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Grid point correlations for 2012-2015

® DL1- Total cloud cover as input, L g
DL2 - Surface air temperature as  &ifis N 78
input

® Grid point correlations show that
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e Comparability to GFS at 24 hour - ke AR
lead assuming that the input fields - SEeSSEEE=ETE o.l—g.——
to precipitation parameterization
do not significantly deviate from Singh, M., Acharya, N., Patel, P, Jamshidi, S.,
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Evaluation of modified DLWP-CS

Region GFS (baseline) @ MDLWP-CS

Canada (50-70N, 130-90W) 0.74 0.82

North Asia (50-70N, 25-140E) 0.80 0.70 Singh, M., Acharya, N., Patel, P, Jamshidi, S.,

s - Yang, Z.L., Kumar, B., Rao, S., Gill, S.S.,
Europe (44-54N, 40-100E) 0.79 0.86 Chattopadhyay, R., Nanjundiah, R.S. and Niyogi,

3 x D., 2023. A modified deep learning weather
United States (32-50N, 1 10-80\‘\’) 0.75 0.84 prediction using cubed sphere for global
precipitation. Frontiers in Climate, 4, p.1022624.

Central Asia (35-50N, 40-100E) 0.79 0.65

Amazon (5N-10S, 50-70W) 0.69 0.88

Equatorial Africa (10N-10S, 14-35E) 0.64 0.76
South Asia (18-35N, 70-90E) 0.90 0.94

Index of agreement for the precipitation
averaged over different land regions from (a)
GFS and (b) MDLWP-CS models with ERA5
precipitation for the test years 2012—2015.



Short-range forecasts of global
precipitation using deep
learning-augmented numerical
weather prediction
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Figure 1: Schematic of the deep learning-augmented numerical weather prediction.



IMERG (mm/day)

Baseline

Day-3 (mm/day)

70E 80E 90E 100E
P Mukhopadhyay, VS Prasad, R Krishna, Medha Deshpande, Malay Ganai, Snehlata Tirkey, Sahadat Sarkar, Tanmoy Goswami, CJ

Johny, Kumar Roy, et al. Performance of a very high-resolution global forecast system model (gfs t1534) at 12.5 km over the indian
region during the 2016—2017 monsoon seasons. Journal of Earth System Science, 128(6):1-18, 2019



Average bias in rainfall (JJA)
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Singh, M., Acharya, N., Grover, A., Rao, S.A,,
Kumar, B., Yang, Z.L. and Niyogi, D., Short-range
forecasts of global precipitation using deep
learning-augmented numerical weather prediction.
NeurlPS 2022



Average bias in rainfall (SON)
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Average bias in rainfall (DJF)
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Average bias in rainfall (MAM)
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ERA5 modified CFSv2 numerical
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ERA5 modified CFSv2 numerical
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ERA5 modified  CFSv2 numerical
(Similar to DLWP-CS weather prediction
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ERA5 modified CFSv2 numerical
(Similar to DLWP-CS weather prediction
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Sesion Lead = | day (mm/day) ||  Lead =2 day (mm/day) Lead = 3 day (mm/day)
DL - ERAS | CFSv2 - ERAS I.l DL - ERAS | CFSv2 - ERAS || DL - ERAS | CFSv2 - ERAS
DIF -0.3 3.827 0.022 7.66 -0.158 7.657
MAM -0.282 3.834 0.032 7.811 -0.11 7.89
1A -0.334 3.97 -0.02 8.102 -0.115 8.239
SON -0.299 3954 0 7.95 -0.148 7.972

Singh, M., Acharya, N., Grover,
A., Rao, S.A., Kumar, B., Yang,
Z.L. and Niyogi, D., Short-range
forecasts of global precipitation
using deep learning-augmented
numerical weather prediction.
NeurlPS 2022

Table 1. Performance of the deep learing augmented numerical weather prediction system CFSv2 versus CFSv2 alone. The table shows
global average bias/error in simulating precipitation by the hybrid deep leaming and CFSv2 system versus CFSv2 alone. DJF (December
to February), MAM (March to May), JJA (June to August) and SON (September to November) represent the different months of an year.
The performance is shown for the entire test period from the year 2003 to0 2010

T Lead = 1 day (mm/day) Lead = 2 day (mm/day) Lead = 3 day (mm/day)
’ DL - ERAS | CFSv2 - ERAS || DL - ERAS | CFSv2 - ERAS || DL - ERAS | CFSv2 - ERAS
Hurricane Katrina -0.345 8.839 0.453 12.18 -0.811 10.227
Hurricane Ivan -0.22 8.466 -0.036 13.48 -1.485 13.135
Cyclone Nargis -5.37 21.151 -1.245 43.845 2.338 47.233
Europe Floods -0.2 6.654 -0.015 8.134 0.12 6.94

China Floods -0.17 11.233 0.465 18.903 -0.48 16.877
India flood 0.003 17.321 0.139 25.297 -0.749 20.259

Table 2. Performance of the deep learning augmented numerical weather prediction system CFSv2 versus CFSv2 alone. The table shows
regional bias/error in simulating various extreme precipitation events by the hybrid deep learning and CFSv2 system versus CFSv2 alone.
The events occured as (i) Hurricane Katrina in 2005, (ii) Hurricane Ivan in 2004, (iii) Cyclone Nargis in 2008, (iv) Europe floods in 2010,
(v) China flood in 2005 and (vi) India flood in 2005



From global to local
weather prediction



We first need to develop
supervised learning
datasets. The solution is
being provided by
DownScaleBench



DownScaleBench for
developing and
applying a deep
learning based urban
climate downscaling

Singh, M., Acharya, N., Jamshidi,
S., Jiao, J., Yang, Z.L., Coudert, M.,
Baumer, Z. and Niyogi, D., 2023.
DownScaleBench for developing
and applying a deep learning based
urban climate downscaling-first
results for high-resolution urban
precipitation climatology over
Austin, Texas. Computational
Lirban Science 3(1) n 22

1. Station Data 2. Coarse resolution input

Source: Input data ( e.g. Gridded observations
reanalysis or Global Historical
Climatology Network (GHCN)

or satellite product)

WRF model simulations
Earth Engine

Quality Control Planetary Computer

Eliminate null values based on
user requirements

DownScale
Bench

3. High Resolution Target 4. Development of

Single Image Super resolution supervised learning

SRCNN, SRGAN and other dataset
Generator models Unify coarse resolution, high
resolution and station
datasets in a single netcdf file



Singh, M., Acharya,

N., Jamshidi, S., Jiao,

J., Yang, Z.L.,

Coudert, M., Baumer,

Z. and Niyogi, D.,
2023.
DownScaleBench for
developing and
applying a deep
learning based urban
climate
downscaling-first
results for
high-resolution urban
precipitation
climatology over
Austin, Texas.
Computational Urban
Science, 3(1), p.22.

uUrban downscaling using deep-iearning based single-image super-resolution

Step 1. Identifying region

oflnpm_g

Building  Step 2. identifying user High resolution ground-
Info system " P 'w“cmo B truth sub-images
g | images
Mlgh resolution lm-go { >
Urban back to the user
Transport mllutlon +
-@' '
Loss
Urban heat computation
Low resolution
Sub - input sub-images Step 6. :‘llgt:u-:..olmio
_images T @ s
—
Step 3. Extracting sub-
Low resolution  images and developing Model-predicted sub-
input supervised learning dataset images

Coarse resolution Urban Downscaling .0 roshiution
operator

ol a
s S TE

1 i
Step 5. Dowmcallng .

@ s <opomor

Deep

ST -



Austin, Texas, USA multi resolution
products for 2013-01-04
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Next, we need state of the art
models to perform
super-resolution/downscaling.
The solution Is being provided
by ClimateDownscaleSuite



ClimateDownscaleSuite: Unifying deep learning models for
weather and climate downscaling
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ClimateDownscaleSuite
applied to VIIRS
to DMSP
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We also need state of the
art novel methods to fuse
station datasets into
downscaling algorithms
MeteoGAN is the answer



MeteoGAN for urban digital twins
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First results from MeteoGAN over Delhi, India

1993-09-10
CHIRPS (5 km) Bicubic (300 m) MeteoGAN (300 m)




First results from MeteoGAN over Delhi, India
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MeteoGAN based land surface temperature at 30-m

Incorporating physical boundary
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Pangu-Weather - 3D Earth Specific Transformer

a Track forecast for Typhoon Kong-rey b

Track forecast for Typhoon Yutu
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Bi, K., Xie, L., Zhang, H., Chen, X.,
Gu, X. and Tian, Q., 2023.
Accurate medium-range global
weather forecasting with 3D neural
networks. Nature, 619(7970),
pp.533-538.

—e— Pangu-Weather
—+— ECMWF-HRES
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(788) (492) (214)
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a,b, Tracking results for two strong tropical cyclones in 2018, that is, Typhoon Kong-rey (2018-25) and Yutu (2018-26). The initial time point is shown below
each panel. The time gap between neighbouring dots is 6 h. Pangu-Weather forecasts the correct path of Yutu (that is, it goes to the Philippines) at 12:00
UTC on 23 October 2018, whereas ECMWF-HRES obtains the same conclusion 2 days later, before which it predicts that Yutu will make a big turn to the
northeast. ¢, A comparison between Pangu-Weather and ECMWF-HRES in terms of mean direct position error over 88 cyclones in 2018. Each number in
brackets in the x-axis indicates the number of samples used to calculate the average. For example, (788) means that there are in total 788 initial points from
which the typhoon lasts for at least 24 hours, and the 788 direct position errors of Pangu-Weather and ECMWF-HRES were averaged into the final results.

Panels a and b were plotted using the Matplotlib Basemap toolkit.
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and Merose, A., 2023. Learning skillful medium-range global weather
forecasting. Science, 382(6677), pp.1416-1421.
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Figure 2: (a) The multi-layer transformer architecture that utilizes the Adaptive Fourier Neural Operator with shared
MLP and frequency soft-thresholding for spatial token mixing. The input frame is first divided into a i % w grid of
patches, where each patch has a small size p x p x ¢. Each patch is then embedded in a higher dimensional space
with high number of latent channels and position embedding is added to form a sequence of tokens. Tokens are then
mixed spatially using AFNO, and subsequently for each token the latent channels are mixed. This process is repeated
for L layers, and finally a lincar decoder reconstructs the patches for the next frame from the final embedding. The
right-hand panels describe the FourCastNet model’s additional training and inference modes: (b) two-step fine-tuning,
(¢) backbone model that forecasts the 20 variables in Table 1 with secondary precipitation diagnostic model (note that
p(k + 1) denotes the 6 hour acc lated total precipitation that falls between £ + 1 and & + 2 time steps) (d) forecast
model in free-running autoregressive inference mode.
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and Anandkumar, A., 2023, June. Fourcastnet:
Accelerating global high-resolution weather
forecasting using adaptive fourier neural
operators. In Proceedings of the platform for
advanced scientific computing conference (pp.
1-11).
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Figure 1: The SwinRDM consists of two parts: (a) the low-resolution forecasting model SwinRNN+ is an improved version
of SwinRNN, which adopts a single-scale architecture and adds a multi-layer feature aggregation component, and (b) the
diffusion-based super-resolution model conditions on the prediction zj; from SwinRNN+.
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Figure 5: Qualitative illustration of a global near-surface wind forecast generated by our SwinRDM*. The prediction starts at . .
the initial time of September 8, 2018, 06:00 UTC. The zoom-in area shows the beginning of Super Typhoon Mangkhut. Our of the AAAI Conference on Artificial Intelligence
method successfully forecasts Super Typhoon Mangkhut with high accuracy and rich fine-scale features. (VO|. 37, No. 1, pp. 322_330)'
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Fig. 1 Structure of the NeuralGCM model. (a) Overall model structure, showing how forcings £y, Neural general circulation models. arXiv preprint
noise z¢ (for stochastic models), and inputs y: are encoded into the model state x¢. Model state is arXIV231107222

fed into the dynamical core, and alongside forcings and noise into the learned physics module. This
produces tendencies (rates of change) used by an implicit-explicit ODE solver to advance the state in
time. The new model state @4 can then be fed back into another time step, or decoded into model
predictions. (b) Inset of the learned physics module, which feeds data for individual columns of the
atmosphere into a neural network used to produce physics tendencies in that vertical column.
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Figure 1: Aurora is a 1.3 billion parameter foundation model for high-resolution forecasting of weather and atmospheric
processes. Aurora is a flexible 3D Swin Transformer with 3D Perceiver-based encoders and decoders. At pretraining time, Aurora
is optimised to minimise a loss £ on multiple heterogeneous datasets with different resolutions, variables, and pressure levels.
The model is then fine-tuned in two stages: (1) short-lead time fine-tuning of the pretrained weights (2) long-lead time (rollout)
fine-tuning using Low Rank Adaptation (LoRA). The fine-tuned models are then deployed to tackle a diverse collection of operational
forecasting scenarios at different resolutions.



Kilometer-Scale Convection Allowing Model Emulation using
Generative Diffusion Modeling

Jaideep Pathak", Yair Cohen"', Piyush Garg"', Peter Harrington?, Noah Brenowitz', Dale Durran'~,
Morteza Mardani', Arash Vahdat', Shaoming Xu'*, Karthik Kashinath', Michael Pritchard'

StormCast

August 21, 2024

INVIDIA Corporation
Lawrence Berkeley National Laboratory
*University of Washington
“University of Minnesota
“Equal Contribution

Radar reflectivily (082)
¥ N
Iz ¥

s B
{2l Do JOOEA JSRM ULLINGO [290)

-
90 g
-~
Diffusion o &
StormCast =
{e) (d)
..
4N
an
g wn
2 e
L o
3 uw
3 L

" < J -
HOW  1SW 180W BW W W

Longitude




DIFFOBS: GENERATIVE DIFFUSION FOR GLOBAL
FORECASTING OF SATELLITE OBSERVATIONS

Jason Stock*
NVIDIA Corporation and Colorado State University
stock@colostate.edu

Jaideep Pathak, Yair Cohen, Mike Pritchard, Piyush Garg, Dale Durran,

Morteza Mardani & Noah Brenowitz

NVIDIA Corporation

{jpathak, yacohen, mpritchard, piyushg, ddurran,
mmardani, nbrenowitz}@nvidia.com

Precipitation (mm/day)

(a) Observation (b) DiffObs

Figure 1: Example 3-day rollout from Oct 27, 2020 as initial condition.
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HealPix

(a) (b)

Figure 1: Division of the sphere into twelve faces according to the HEALPix. Four faces
to represent either the northern (blue) and southern extratropics, while four more faces
arrange around the equator to represent the tropics (yellow). Each face can be subdivided
into patches with divisions along the side of each face given by powers of two. The sphere
in (a) has a pixel-count of one per face side; we call it hpx1. The sphere in (b) counts
two pixels per side (hpx2), whereas the two spheres in (¢) and (d) have eight pixels per
side, i.e., hpx8. Several latitude lines in red emphasize the iso-latitudinal arrangement

of the patches. The saturated blue area depicts a 3 x 3 stencil, as applied by a standard
convolution. To apply the 3 x 3 stencil at the top corner of the equatorial faces, i.e., stencil
position in (d), we fill in the missing corner patch with the average of the values in the
two adjacent patches on the extratropical faces.
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Figure 8: Zonally averaged three-day mean of Zs5oo plotted as a function of time and
latitude: (a) for ERAS reanalysis, (b)-(h) for recursive one-year simulations for each
model as identified in the titles, initialized on January 2, 2018. Also shown are 15-day
averaged values of the 5600 m contour of Zsq for the ERA5 data (black lines) each model
simulation (white dashed lines).
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A machine learning model that outperforms
conventional global subseasonal
forecast models
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* Check for updates Skillful subseasonal forecasts are crucial for various sectors of society but pose

a grand scientific challenge. Recently, machine learning-based weather fore-
casting models outperform the most successful numerical weather predic-
tions generated by the European Centre for Medium-Range Weather Forecasts
(ECMWF), but have not yet surpassed conventional models at subseasonal
timescales. This paper introduces FuXi Subseasonal-to-Seasonal (FuXi-S2S), a
machine learning model that provides global daily mean forecasts up to 42
days, encompassing five upper-air atmospheric variables at 13 pressure levels
and 11 surface variables. FuXi-S2S, trained on 72 years of daily statistics from
ECMWF ERAS reanalysis data, outperforms the ECMWF’s state-of-the-art
Subseasonal-to-Seasonal model in ensemble mean and ensemble forecasts for
total precipitation and outgoing longwave radiation, notably enhancing global
precipitation forecast. The improved performance of FuXi-S2S can be pri-
marily attributed to its superior capability to capture forecast uncertainty and
accurately predict the Madden-Julian Oscillation (MJO), extending the skillful
MJO prediction from 30 days to 36 days. Moreover, FuXi-52S not only captures
realistic teleconnections associated with the MJO but also emerges as a valu-
able tool for discovering precursor signals, offering researchers insights and
potentially establishing a new paradigm in Earth system science research.



0.6 {A) T2m weekly skill of ACC 0.6 {B) TP weekly skill of ACC
' | FengWu-W2s,
0s | 1 054 FengWu-w2s.
| FuXi-S25
04 044 ECMWF
|
03 3 034
|
02 021
|
01 014
|
00 00
0.6.1€1 2500 weekly skl of ACC 0.6 10) OLR weekly skl of ACC
05 051
04 | b 044
§ |
03 034
|
02 r 024
01 01 -}
00 . 00
awett et etk etk g week g ek awedt  guedt et etk geek g e

Figure 1 Correlation skills of subseasonal predictions among different models. (A)
Predictive skill of 2m air temperature (T2m) anomalies as a function of lead week based
on ECMWF (blue bar), Fuxi-S2S (purple bar) and FengWu-W2S forecasts. The skills
of FengWu-W2S are assessed based on the anomalies calculated relative to the
observed climatology (orange bar) and FengWu-W2S’s hindcast climatology (yellow
bar), respectively. The prediction skill is validated for the period of 2017-2021. (B, C,
D) As in (A), but for the prediction skills of the anomalies of total precipitation (TP),
T2m, and geopotential height at 500 hPa (Z500), respectively.
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Supplementary Figure 1. The main components of FengWu-W2S. (A) The
multimodal architecture of FengWu-W2S, which inherited from FengWu. (B) The
surface data is divided into different modules for feature extract and facilitating the
exchange of mass and energy between subsystem in the multi-modal fuser by a
physically guided way. (C) Multi-level perturbation strategies for different variables
that can be controlled manually.
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Figure 6: Scorecard comparing forecast scores of AIFS-CRPS 096 ensemble (approximately 1.0° spatial resolution)
versus the IFS ensemble (approximately 0.1° spatial resolution), 1 February to 30 September 2024. Forecasts are
initialised at 00 and 12 UTC. Shown are relative score changes as function of lead time (day 1 to 15) for northern extra-
tropics (n.hem), southern extra-tropics (s.hem) and tropics. Blue colours mark score improvements and red colours score
degradations. Purple colours indicate an increase in ensemble standard deviation, while green colours indicate a
reduction. Differences that reach 95% significance level are shown in light shading and differences that reach 99.7 %
significance level are shown in dark shading. Variables are geopotential (z), temperature (t), wind speed (ff), mean sea
level pressure (msl), 2 m temperature (2t), 10 m wind speed (10ff) and 24 hr total precipitation (tp). Numbers behind
variable abbreviations indicate variables on pressure levels (e.g., 500 hPa), and prefix indicates verification against IFS
NWP analyses (an) or radiosonde and SYNOP observations (ob). Scores shown are ensemble mean anomaly correlation
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Forecast evaluation datasets
All forecasts will be evaluated against

For temperature and pressure

Forecasts will be evaluated against weekly averages computed from
six-hourly data (0, 6, 12, and 18 UTC).

Figure 2. Schematic illustrating the competition structure.

For precipitation

Forecasts will be evaluated against weekly accumulations derived

from hourly data.

Snadey | Sundey

BN 0000000000000000000000000000
B ©0000000000000000000000000000

[Los |

Forecast evaluation tools

et

To ensure transparency and replicability of the evaluation techniques used, participants can download the evaluation code and evaluate their forecasts

using the Python package

* retrieve_evaluation_data.py retrieves the required datasets including rvations and ¢l jog! quintile

« forecast_evaluation.py computes evaluation metrics.

The evaluation code should enable participants to self their without which begins

on 15 May 2025

pressure during the
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A Data & Preprocessing

Al-Land (HEALPix-U-Net) Pipeline

B Grid: HEALPix Level 6

'S R ' )
ERAS-Land via ; " ‘ -Q N\
ARCO-ERAS (Zarr, cloud-native) Hourly -» Daily aggregation ’ Lat-lon - HEALPix regridding (earth2grid)
(no download) {dally:mean) | 0 Level = 6 (nside = 64) - 12 x 64 x 64 tiles
\ 0/ Tensor shape into model: [B, 17, 12, 64, 64]
. > (- > o
- * N 1 = B \0-/
Initial state at day t M'?g?:;ﬂ;m::'ze
(all 17 channels) (in lat-lon grid)
. J . J
C Model & Training D Roll-out Forecasting
~ N ~
3D U-Net
. 3 encoder/decoder stages Targets at day t+1: 2 "
R (o th) + Conv3D(k=3), BN, ReLU T[> Y_{t+1} € R~ {8x12x64x64} Doyt nput ™ ey A
- « Pool/Up: (1,2,2) soil moisture & soil temp levels 1-4)

+ Out: 8 channels L - J

L - v - ~
Replace day t+1 4 Predict day t+2
soil in inputs soil (8 ch)
Training objective; learn f: X_t = Y_{t+1} L L

Loss: MSE Optimizer: Adam (Ir=1e-3) Epochs per (t=t+1) pair: 10
Daily pairs from year; normalization stats fixed; tiles stay in HEALPix space

Iterate for H steps to obtain multi-day roll-outs.
. Optionally regrid outputs back to lat-lon and save (NetCDF).
E Input Variables & Normalization (min-max, lat-lon space) P yreo P

—

Variable (min -+ max) Variable (min -+ max) Variable (min -+ max)

2m_temperature: 188 - 327 skin_temperature: 186 - 348

snowfall: -4.66e-10 - 0.0157

volumetric_soil_water_layer_4: -2.98e-08 - 0.766
total_precipitation: -3.73e-09 - 0.101 soil_temperature_level_1: 196 - 340

10m_u_component_of_wind: -281 - 133 mean_sea_level_pressure: 9e+04 —» 1.1e+05 soil_temperature_level_2: 201 - 322

10m_v_component_of_wind: -159 - 167 volumetric_soil_water_layer_1: -0.0314 - 0.79 s0il_temperature_level_3: 198 - 317
surface_solar_radiation_downwards: -6 -+ 4.89¢+06

evaporation: -0.00283 - 0.000733

volumetric_soil_water_layer_2: -0.0204 - 0.788 soil_temperature_level_4: 181 - 315

volumetric_soil_water_layer_3: -0.0227 - 0.784

Al

All inputs normalized in lat-lon using fixed min/max, then regridded to HEALPix L6. Model predicts next-day soil variables; predictions are fed back for roll-outs.



A Data & Preprocessing

7 AR

Al-Land (HEALPix-U-Net) Pipeline ™ N

¢
el ——

B Grid: HEALPix Level 6

Lat-lon - HEALPix regridding

(convert 2D to 3D)
Level = 6 (nside 64) ~ 122 x 64x 64 tiles
“Tensor' shape in model: [B, 17,12, 64, 64)

(e )
ERAS-Land via Hoirly.~Dail ti
ARCO-ERAS (Zar, cloud-native) ourty ( dail‘;‘ '{‘ :33)' €gation |
L (no download) o i k\_‘
- " 2 it
[ ==
Initial state at day t Min-max normalize
(17 channels) (per variable
(in lat-lon grid)

» % )

3D U-Net
Encoder-Decoder stages
Conv(3x3)(B), BN, ReLU
* Pool/Upi: (1.2,2)
» Out: 8 channels

Input at day t
X_t € R*(17x12x64x64)

Targets at day t+1
Yt+1, € R™ (8x164x64)
Soil moisture & soil temp levels 1-4,

D Roll-out Forecasting

—n)
Day t input [

Predict day t+1
>
(17 ch) y _‘J L

Soil (8 ch) «sesy
']

Training objective: Learn f (X.). = Y, (t+1)
Loss: MSE Optimizer: Adam (Ir=1-3) Epochs per (t=+1) pair: 10
Daily pairs from year, normalization stats fixed, tiles in HEALPix space

i

=

Replace day t+1
soil in inputs

=i f

Il Predict day t+2
& Soil (8 ch) .
24 |

Iterate for H steps to obtain multi-day roll-outs. l
Optionally regrid outputs back to lat-lon and save (NetCDF) o \\)

2m_temperature:-16.7—-32.7 skin_temperature: 168— 348

total_precipitation:* 3.8e-09-0.101 snowfall: -4.66e-06 - 0.501
+10m_component_of_wind: -241—13.3 mean_sea_level_pressure: 98014—1.1e-05

volumetric_soil_water_layer,1:-0.0316-0.79

volumetric_soil_water_layer_2:-0.0204 - 0.786
volumetric_soil_water_layer_3:-0.0227-0.784 o

\" Variable (min - max) ?
volumetric_soil_water_layer_4:-2.98e-08 — 0.766 .
soil_temperature_level_1-196 — 340
soil_temperature_level_2:130 — 204
soil_temperature_level_3:198 — 317
soil_temperature_level_4:181 — 315 E
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GT (Day 1) GT (Day 2) GT (Day 3)

GT (Day 4) GT (Day 5) GT (Day 6)
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volumetric soil water layer 1



GT (Day 4)-14 GT (Day 5) - L4 GT (Day 6) - L4
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volumetric soil water layer 4



GT (Day 6) - Temp L1

GT (Day 5) - Temp L1

GT (Day 1) - Temp L1 GNDayI) ‘lbmpu GT (Day 3) - Temp L1 GT (Day 4) - Temp L1
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Anomaly Correlation

Wet land event: 2019 Midwest / Mississippi Basin flooding
2019031500 IC

# US box (CONUS-ish)
lat_slice = slice(50, 25)
lon_slice = slice(-125, -65)

ACC: Soil moisture layer 1
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0.2 4

30
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40
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RMSE

Flooding in the Mississippi River Basin during the winter, spring, and
summer of 2019 caused at least 12 deaths and economic losses in 19
states totaling in excess of $20 billion. Estimated damages in the
Midwestern United States alone had reached $12.5 billion by April 2019.
Wikipedia
https://en.wikipedia.org » wiki » Mississippi_River_floo... }

Mississippi River floods of 2019 - Wikipedia

Soil moisture RMSE vs lead time

0.40 1

0.35

0.30 A

0.25 A
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volumetric_soil_water_layer_1
volumetric_soil_water_layer_2

volumetric_soil_water_layer_3
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2012 Central US drought

2012051500 IC

The 2012 Central US drought, one of the worst on record, caused

massive losses, with estimates ranging from $30 billion to over $35

billion in agricultural damage alone, impacting corn and soybean
yields significantly and raising food prices. The overall economic

impact on the U.S. GDP was potentially 0.5-1%, or $75-$150 billion,

making it one of the costliest U.S. weather disasters, with lingering effects on livestock

feed and food costs. @

ACC: Soil moisture layer 1

1.0

0.9 1

0.8

0.7

0.6 4

0.5 1

Anomaly Correlation

0.4 1

0.3 1

0.2

0 10 20 30 40 50
Lead (days)

60

RMSE

(Released Thursday, Jan. 5, 2012)
Valid 7 am. EST

U.S. Drought Monitor January 3, 2012

Drought Impact Types:

£ Delineates dominant impacts
$= Short-Term, typically less than

6 months (e g. agriculure, grasslands)
L= Long-Term, typically greater than
& months (e g. hydrology, ecology)
Intensity:

[CJ DO Abrormally Dry

[C] D1 Moderate Drought

[l D2 Severe Drougnt

M D3 Extreme Drought

I D4 Exceptional Drought

Author:
Brad Rippey
U.S Department of Agriculture

The Drougnt Monior focuses on broed:
scale corditions. Local conditions may
vary. See accompanying text sumemary for
forecast statements.

R RO

http://droughtmonitor.unl.edu/

S0II moisture K>St vs 1eaa ume
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time = 2024-02-09, level = 40

100 150 200 250 300
lon

time = 2024-02-09, level = 40

350

60
bl
Al Ocean Model
20
- o 7
-20
time = 2024-02-09, level = 1
-40
300
-60
295
290 ;§ °
£
285 _.E'
280 g 60
275 40 1
270 201
- 0 i
-20
—40
[u10, v10, sw_down, Iw_down, t2m,
~60

g2m, precip, sp] - Atmospheric

forcings from ERAS 0

84

lon

T T T T T
100 150 200 250 300

T
350

275.5

275.0

274.5

274.0

273.5

potential_temperature

273.0

272.5

0.03490

0.03485

0.03480 ;

0.03475

0.03470

0.03465

time = 2024-02-09, level = 1

0.045

0.040

0.035

0.030

salinity

0.025

0.020

0.015

0.010

Add a sparse tail below 300 m, e.g. [459, 747, 1193, 1807] m, to capture deeper thermoclinefintermediate waters—
still keeping the upper-ocean dense.

Levels that we will use : : [5, 15, 25, 45, 95, 155, 205, 303] m.

Indices these correspond to: 0, 1, 2, 4, 9, 15, 20, 25

"% Example of GODAS Pentad Timestamps

Pentad Days Covered  Timestamp Shown in GODAS
Pentad 1 Jan 1-5 Jans

Pentad2  Jan 6-10 Jan 10

Pentad3  Jan 11-15 Jan 15

Pentad4  Jan 16-20 Jan 20



Generative Data Assimilation of Sparse Weather
Station Observations at Kilometer Scales

Peter Manshausen'?, Yair Cohen', Peter Harrington', Jaideep Pathak', Mike
Pritchard!®, Piyush Garg', Morteza Mardani', Karthik Kashinath', Simon

Byrne', Noah Brenowitz'

!NVIDIA, Santa Clara, CA, USA
2University of Oxford, Oxford, UK

3University of California Irvine, Irvine, CA, USA

Key Points:

+ We demonstrate data assimilation of weather station data to 3km-resolution sur-

face fields with a diffusion model surrogate.

« This opens up a simple, scalable pipeline to create km-scale ensemble reanalyses

at low cost and latency, competitive to operational ones.

+ The model is easily adapted to new observations, produces states of variables not
directly observed, and shows evidence of learned physics.

o manmeet3591 |/ DeepAssimilate

Code (O Issues [ Pullrequests () Actions [ Projects [0 wiki @ Security
@ DeepAssimilate #uvic
¥ main ~ ¥ 18ranch © 0Tags Q Gotofile

@ manmeet3591 Update README md

|2 Insights

I deepassimilate fixed the architecture factory

W examples added example and requirements.txt
B legacy changed structure

[ .os_store conda

[ LICENSE Initial commit

() MANIFESTin Create MANIFEST.in

[ README.md Update README.md
[ requirements.txt updated requirements. txt

O setup.py added setup.py
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Precision Agriculture scale soil moisture data

- N N —\
e Concept e Pipeline G Performance / Robustness
1. A generative diffusion model Cube extraction (30 m, 64x64xT, e.g., T=4 Power Spectral Density (PSD):
learns SMAP-HydroBlocks—like steps) -> Normalize/mask -> Unconditional compare texture/scale fidelity for
soil-moisture diffusion training pg(X) (3D denoiser on x—y- Held-out SMAP-HB (GT) vs Prior
2. Zero-shot data assimilation t) -> Inference init (noise cube) -> Apply (unguided) vs Guided (zero-shot DA).
using diffusion produces 30 m, forward ops H over time (e.g., per-step 9 km Accuracy metrics: R? (higher better),
6-hourly soil moisture. -30 m) -> Guided denoising with Vy log ubRMSE (lower), Bias (closer to 0).

\ 7 | p(Y|H(X)) across the cube (zero-shot DA) -> g

[~ o q Sample N ensemble cubes -> Stitch cubes in - <
e Training data & coverage | space/time -> Ensemble mean/spread, P @ Uncertainty & ensembles
Ta SR . coverage -> Metrics vs SMAP-HB & stations -

rget (train): SMAP e
HydroBlocks, Kentucky, 30 m, \> a0 0 SoUny OURpULS. ] Montage Sharpness
At=6 h, 2015-2019 N~ | Mean/Spread Rank histogram
Coarse products: SMAP L4, 9 km, ( @ Kentucky Mesonet Validation Reliability =~ CRPS
At=6 h (2015-2019) » -y
Static predictors: soil properties, s : o J
elevation SMAP-HB (N\/‘/‘A [\M\ ‘ ( )
- I | @ Generalization and 00D
SMAP ;l -I " : OOD-Region: a different Kentucky
: | LR LN S A o i A Mesonet county
= = R Sitamtot @bt G s e OOD-Time: a later year (e.g., 2020) over
i ~ | WKU Farm
0OOD-Sensor: new sensors on WKU Farm
>

N




Diffusion and its derivatives everywhere

DMSP Ground Truth VIIRS Input DDIM___ LcMm

32 32 32 2
@3l w3l w3l @31 50
° ° ° °
E 2 E Z
930 ®30 730 T30
o Method SSIM PSNR MAE MSE RMSE Inference
29 29 29 29 H Time
3
¢ § DDIM 0.6158 21.9123 0.0438 0.0064 0.0802 156.79s
-100 -99 -98 -97 -100 -99 -98 -97 -96 -100 -99 -98 -97 -100 -99 -98 -97 -96 08
Longltude tongitude tongltude Longitude S [em 0.6491 206988 | 0.0506 0.0085 0.0923 16.365
EDM Euler Flow Heun Flow Vanilla Flow v
o —— - o - A
. o) EDM 0.5141 20.2804 0.0539 0.0094 0.0968 315.84s
32 32 32 32 20 E
Euler Flow | 0.2247 19.7997 0.0757 0.0105 0.1023 154.56s
o3l 031 @3l 03l
b1 4 ° 1 Heun Flow | 0.2233 20.3246 0.0681 0.0093 0.0963 154.95s
z 2 2 £ 10
@ 30 © 30 © 30 T 30
= = - = Vanilla 0.3637 20.6182 0.0581 0.0087 0.0931 134.91s
29 29 29 29 Flow
& 2 2 VIIRS 0.4137 12.5146 0.1110 0.05603 0.2367 -
-100 -99 -98 -97 -100 -98 -97 -96 -100 -99 -98 -97 -100 -98 97

Longitude Longitude Longitude Longitude
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