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👋  Hi, I’m Andrew Bennett
I am an assistant professor from the Dept. 
of Hydrology and Atmospheric Sciences 
and Statistics & Data Science Program at 
the University of Arizona

I’ve worked on a number of hydrologic 
modeling applications across scale and 
process

My main focus is using and developing 
deep learning models for hydrology

I am also interested in open source 
technologies for both research and 
teaching of Earth systems science
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Fisher, R. A., and C. D. Koven (2020), Perspectives on the Future of Land Surface Models and the Challenges of Representing Complex Terrestrial 
Systems, Journal of Advances in Modeling Earth Systems, 12(4), doi:10.1029/2018MS001453.

The evolution 
of land surface 
models
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The straw that broke 
the CAMELS back



All aboard the 
hype train!

On the ascendency of ML methods 
in hydrologic modeling
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ML techniques surpass hydrologic 
models for streamflow prediction

Mai, J., Shen, H., Tolson, B. A., Gaborit, É., Arsenault, R., Craig, J. R., et al. (2022). The Great Lakes Runoff 
Intercomparison Project Phase 4: the Great Lakes (GRIP-GL). Hydrology and Earth System Sciences, 26(13), 
3537–3572. https://doi.org/10.5194/hess-26-3537-2022

https://www.upstream.tech/hydroforecast
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Deep learning uptake in 
atmospheric science has 
been rapid too

Keisler, R. (2022, February 15). Forecasting Global 
Weather with Graph Neural Networks. arXiv. 
Retrieved from http://arxiv.org/abs/2202.07575

Weyn, J. A., Durran, D. R., Caruana, R., & Cresswell-Clay, N. (2021). 
Sub-Seasonal Forecasting With a Large Ensemble of 
Deep-Learning Weather Prediction Models. Journal of Advances 
in Modeling Earth Systems, 13(7), e2021MS002502. 
https://doi.org/10.1029/2021MS002502

http://arxiv.org/abs/2202.07575
https://doi.org/10.1029/2021MS002502
https://doi.org/10.1029/2021MS002502


Wait a second, this 
train is FAST !
There has been an  
explosion of ML papers 
applied to Earth 
system science, with 
strong performance
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For instance, we’re 
at almost 1000 
LSTM papers 
published in 2023 
in hydrology!



Oh no, it’s not a 
train after all!
Model proliferation as a social problem
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Fisher, R. A., and C. D. Koven (2020), Perspectives on the Future of Land Surface Models and the Challenges of Representing Complex Terrestrial 
Systems, Journal of Advances in Modeling Earth Systems, 12(4), doi:10.1029/2018MS001453.

The fragmentation 
of land surface 
models

Everybody has an ML 
model of their favorite 
processes now!
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Big efforts are 
starting, but the 
main focus is on 
atmospheric 
circulation



We need a vision for 
integrating both 
modeling approaches
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Today, I want to walk through 
three case studies, showcasing 
methods for “physics-based” 
ML in hydrology
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Part 1: emulation for rapid simulation
Continental scale emulation of ParFlow-CLM to enable 
on-demand forecasts of coupled surface/groundwater
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Continental scale emulation 
of ParFlow-CLM to enable 
on-demand forecasts of 
coupled surface/groundwater

This work is in collaboration with a large team 
from Laura Condon’s lab at University of 
Arizona and Reed Maxwell and Peter Melchior 
at Princeton University 

Large, gridded models give spatiotemporally 
complete views of the state of a watershed, 
but are difficult to run and calibrate
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But, train emulators based on the models

We are emulating 
continental scale, high 
resolution (1km) 
simulations using 
ParFlow-CLM

Resolving full 
spatiotemporal dynamics 
(3d + time)

Processes vary across 
orders of magnitude in 
both space and time
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We used two baseline 
architectures for 
validation and 
intercomparison 
purposes
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I developed a neural network architecture 
that works like a hydrologic model (FSTR)
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FSTR outperforms 2 standard neural 
network architectures on predictions 
of predictions of water table depth



Overall, FSTR is extremely good at 
matching full 4-d spatiotemporal patterns

Capturing temporal variability Capturing spatial variability

22
Bennett, A., Tran, H., De la Fuente, L., Triplett, A., Ma, Y., Melchior, P., et al. (2024). Spatio-temporal machine 
learning for regional to continental scale terrestrial hydrology. Journal of Advances in Modeling Earth 
Systems, 16, e2023MS004095. https://doi.org/10.1029/2023MS004095

https://doi.org/10.1029/2023MS004095


Overall, FSTR is extremely good at 
matching full 4-d spatiotemporal patterns

Capturing temporal variability Capturing spatial variability
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1 year daily forecast takes ~30 minutes on 1 GPU 

>100x speedup vs Parflow on 3,000 cores

Bennett, A., Tran, H., De la Fuente, L., Triplett, A., Ma, Y., Melchior, P., et al. (2024). Spatio-temporal machine 
learning for regional to continental scale terrestrial hydrology. Journal of Advances in Modeling Earth 
Systems, 16, e2023MS004095. https://doi.org/10.1029/2023MS004095

https://doi.org/10.1029/2023MS004095


Bonus materials from this line of work:
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Hull, R., Leonarduzzi, E., De La Fuente, L., Viet Tran, H., Bennett, A., Melchior, P., Maxwell, R. M., 
and Condon, L. E.: Simulation-based inference for parameter estimation of complex 
watershed simulators, Hydrol. Earth Syst. Sci., 28, 4685–4713, 
https://doi.org/10.5194/hess-28-4685-2024, 2024

Simulation-based inference



Bonus materials from this line of work:
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Hull, R., Leonarduzzi, E., De La Fuente, L., Viet Tran, H., Bennett, A., Melchior, P., Maxwell, R. M., 
and Condon, L. E.: Simulation-based inference for parameter estimation of complex 
watershed simulators, Hydrol. Earth Syst. Sci., 28, 4685–4713, 
https://doi.org/10.5194/hess-28-4685-2024, 2024

Simulation-based inference

“Truth” Inverted

Amanda Triplett, Andrew Bennett, Laura Elizabeth Condon, et al. A 
Deep-Learning Based Parameter Inversion Framework for Large-Scale 
Groundwater Models. Geophysical Research Letters . In press.

Large-scale parameter inversion
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Key takeaways:
Model emulation can yield multiple orders of magnitude 
of computational speedup

This enables ensemble methods, on-demand forecasting, 
parameter estimation/calibration and frugal deployment 
abilities

Large scale models of the future will be expected to ship 
with emulated versions for rapid exploration, validation, 
and teaching



Part 2: embedded parameterization
Deep learned process parameterizations improve 
predictions of turbulent heat fluxes in hydrologic models
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Deep learned process parameterizations improve 
predictions of turbulent heat fluxes in hydrologic models

This work was in collaboration with Bart 
Nijssen (University of Washington)

Basic idea: Put a neural network into a 
process based model

Our study focused on turbulent heat 
fluxes, which control ET and 
temperatures of the land surface

We explored three scenarios:

1. A calibrated PBHM
2. A one way coupled neural net
3. A two way coupled neural net
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We gathered data from 60 FluxNet sites, 
totalling over 500 site-years of half-hourly data
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Both neural net methods show improved 
performance over process-based method

Figure shows CDF of performance across all 60 sites at 30 minute timescale
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The introduction of the 2 way coupling also improved the 
long-term water balance compared to both SA and NN1W
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Key takeaways:
Allowing model components to dynamically talk to each 
other we can have emergent improvements to our 
predictive capabilities

Better quantification of land-atmosphere interactions 
improves long-term water balance simulations

We currently do not have any scalable technologies to 
explore this space, and need to invest in such 
developments



Part 4: hybrid models (embedded hypotheses)
Methods for estimation of unknown/unobserved parameters 
to improve hydrologic prediction and understanding
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Methods for estimation of unknown/unobserved parameters 
to improve hydrologic prediction and understanding

First part is in mostly done by my 
students, Aamir Lamichhane & Nabin 
Kalauni

Last part of this was in collaboration with 
Frederik Kratzert (Google) and Wouter 
Knoben (University of Calgary)

Differentiable modeling is an emerging 
and hyped up technique, where you 
write the “physical” model in an ML 
framework

Then, you can use things like neural 
networks to replace processes or 
estimate parameter values for the 
internal equations Shen, C., Appling, A.P., Gentine, P. et al. Differentiable modelling to unify machine 

learning and physical models for geosciences. Nat Rev Earth Environ 4, 552–567 
(2023). https://doi.org/10.1038/s43017-023-00450-9
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A primer on differentiable modeling

Consider a simple, nonlinear reservoir:
And a a K(S) function that we want to 
reproduce (or more accurately, find):

“unknown”
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A primer on differentiable modeling
Given many samples derived from the 
system that we want to “learn”:

Fit a model where the parameterization 
is “learned” by a neural network:
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A primer on differentiable modeling
Given many samples derived from the 
system that we want to “learn”:

Fit a model where the parameterization 
is “learned” by a neural network:

Inspecting the internals of the model we 
find a good fit:
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A primer on differentiable modeling

If you want to learn more I have a book 
chapter in EarthAI outlines the theory that 
drives “differentiable hydrology” 

The chapter demonstrates how to build 
conceptual hydrologic models 
parameterized by neural networks

The code, data, and environment are all 
open source and publicly available:
https://github.com/earth-artificial-intelligence/earth_ai_book_materials/blo
b/main/chapter_07/ai_for_physics_inspired_hydrology_modeling.ipynb 

https://github.com/earth-artificial-intelligence/earth_ai_book_materials/blob/main/chapter_07/ai_for_physics_inspired_hydrology_modeling.ipynb
https://github.com/earth-artificial-intelligence/earth_ai_book_materials/blob/main/chapter_07/ai_for_physics_inspired_hydrology_modeling.ipynb


We are applying this method 
to multiple processes: 
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This work is led by Aamir Lamichhane

We parameterize the SNOW17 model with a 
LSTM, and train across Snotel sides in the 
western US to predict snow water 
equivalent (SWE)



We are applying this method 
to multiple processes: 
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This work is led by Aamir Lamichhane

We parameterize the SNOW17 model with a 
LSTM, and train across Snotel sides in the 
western US to predict snow water 
equivalent (SWE)

Our model shows strong improvements in 
predictive capabilities broadly

We also find good improvement in key 
metrics such as peak SWE 
magnitude/timing, and melt periods



We are applying this method 
to multiple processes: 
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This work is led by Nabin Kalauni

We are developing a coupled mass/energy 
balance land surface model to simulate 
multiple processes, focusing currently on 
L-A interactions and evapotranspiration



We are applying this method 
to multiple processes: 
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This work is led by Nabin Kalauni

We are developing a coupled mass/energy 
balance land surface model to simulate 
multiple processes, focusing currently on 
L-A interactions and evapotranspiration

Preliminary results show strong 
performance, though there are many 
process interactions and tradeoffs to 
explore

Big questions in training these types of 
models around initialization/spinup!!
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But, broader philosophical questions linger.
We are tackling these with a multi-model approach

To do this, we used frozen 
LSTM models that were 
pre-trained from scratch

We then replace the last 
layer “regression head” with 
a layer that predicts 
parameter values for 3 
different hydrologic model 
structures

We do this for 140 
catchments across the US

dS/dt = f(S(t), x(t),  θ(t))

LSTM
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The medium and full complexity models show almost state 
of the art performance when configured flexibly 
Figure shows CDF of performance across all 140 sites (SOTA: median KGE ~0.75)

Note: The exact same LSTM is issued for all of these predictions, except green lines
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For each of the model configurations this was done 10 times.
So, do the end models have similar hydrologic behaviors?

some classes excluded

To find out we calculate the derived correlation between parameter 
values across all runs, and show the distributions as violin plots
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For each of the model configurations this was done 10 times.
So, do the end models have similar hydrologic behaviors?

some classes excluded

To find out we calculate the derived correlation between parameter 
values across all runs, and show the distributions as violin plots

Shows decent parameter 
convergence, but poor 

performance



47

For each of the model configurations this was done 10 times.
So, do the end models have similar hydrologic behaviors?

some classes excluded

To find out we calculate the derived correlation between parameter 
values across all runs, and show the distributions as violin plots

Had performance, but 
shows a large degree of 
disagreement in values
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For each of the model configurations this was done 10 times.
So, do the end models have similar hydrologic behaviors?

some classes excluded

To find out we calculate the derived correlation between parameter 
values across all runs, and show the distributions as violin plots

Good performance, and 
high agreement in 
parameter values
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Key takeaways:
To me, at least, this seems to show that the LSTM is 
learning some “general” hydrologic concepts

Additionally, this is a whiff of evidence that the LSTM is 
probably driving the overall predictive performance

We (and others) have only implemented simple methods 
so far, there is still a ton to explore in this space



Thanks for listening!
Looking forward to 
the discussion
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Feel free to email any questions! 
andrbenn@arizona.edu
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Cell state update Memory state update Output, hidden, and 
action updates

Core AC-ST-LSTM equations



Even with fast and 
robust emulators, we 
still want to be able to 
improve the 
predictions of our 
models by (hopefully) 
finding better 
parameter values
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https://doi.org/10.1029/2024GL114285



Originally we were motivated by work from Yueling 
Ma, who developed a ML estimate of WTD 
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Ma, Y., Leonarduzzi, E., Defnet, A., Melchior, P., Condon, L.E. 
and Maxwell, R.M. (2024), Water Table Depth Estimates over 
the Contiguous United States Using a Random Forest Model. 
Groundwater, 62: 34-43. https://doi.org/10.1111/gwat.13362

https://doi.org/10.1111/gwat.13362


But first we must demonstrate that the overall method works, so 
Amanda Triplett led the effort to develop our inversion framework

Develop the 
training data

Train the 
inversion model

Ensure the 
parameters work
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Develop the 
training data

Train the 
inversion model

Ensure the 
parameters work
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But first we must demonstrate that the overall method works, so 
Amanda Triplett led the effort to develop our inversion framework
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Develop the 
training data

Train the 
inversion model

Ensure the 
parameters work



This works well! Showing an example from the test set
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Predicted 
conductivity

Predicted 
water table

Test
water table

Test
conductivity



The model also learns physically plausible relationships
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Of course, we used a particular 
set of recharge values for 
training, but they are uncertain

To test robustness we used a 
“metamorphic test” by applying 
perturbations to the recharge, 
holding WTD constant

Overall results follow hydrologic 
reasoning - to maintain WTD 
with more water, a higher 
conductivity is required (and 
vice versa)


