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Y Hi, I'm Andrew Bennett

| am an assistant professor from the Dept.
of Hydrology and Atmospheric Sciences
and Statistics & Data Science Program at
the University of Arizona

I've worked on a number of hydrologic
modeling applications across scale and
process

My main focus is using and developing
deep learning models for hydrology

| am also interested in open source
technologies for both research and
teaching of Earth systems science




The evolution
of land surface
models

Demographic Veg

Dynamic Veg

Plant Functional Type Distinctions Carbon Cycle and Use Change Crops, Irrigation

urface Energy Fluxes Stomatal Resistance Lakes, Rivers, Wetlands Groundwater

Fisher, R. A., and C. D. Koven (2020), Perspectives on the Future of Land Surface Models and the Challenges of Representing Complex Terrestrial
Systems, Journal of Advances in Modeling Earth Systems, 12(4), doi:10.1029/2018MS001453.
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The straw that broke
the CAMELS back
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Rainfall-runoff modelling using Long Short-Term

Memory (LSTM) networks
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Toward Improved Predictions in Ungauged Basins:
Exploiting the Power of Machine Learning
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Abstract Long short-term memory (LSTM) networks offer unprecedented accuracy for prediction in
ungauged basins. We trained and tested several LSTMs on 531 basins from the CAMELS data set using
k-fold validation, so that predictions were made in basins that supplied no training data. The training
and test data set included ~30 years of daily rainfall-runoff data from catchments in the United States
ranging in size from 4 to 2,000 km? with aridity index from 0.2 to 5.20, and including 12 of the 13 IGPB
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All aboard the
hype train!

On the ascendency of ML methods
in hydrologic modeling



ML techniques surpass hydrologic
models for streamflow prediction
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Mai, J., Shen, H., Tolson, B. A., Gaborit, E., Arsenault, R., Craig, J. R., et al. (2022). The Great Lakes Runoff
Intercomparison Project Phase 4: the Great Lakes (GRIP-GL). Hydrology and Earth System Sciences, 26(13),

3537-3572. https://doi.ora/10.5194/hess-26-3537-2022
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HydroForecast wins out at the Competition for Emerging Inflow Forecasting Technologies: “The first goal of the
competition was to determine whether the HPC method utilized by the National Water Model, or the Al methods
utilized by firms Upstream Tech and Sapere Consulting could beat the existing models used by the member agencies
and River Forecast Centers in a fully operational setting. The second goal of the competition was to develop a record
of forecast performance across products and regions that members could leverage to evaluate their own
performance on their river systems”

https://www.upstream.tech/hydroforecast
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Deep learning uptake in
atmospheric science has

been rapid too
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Deep-Learning Weather Prediction Models. Journal of Advances
in Modeling Earth Systems, 13(7), e2021IMS002502.
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Wait a second, this
trainis FAST!

There has been an
explosion of ML papers
applied to Earth
system science, with
strong performance



For instance, we're
at almost 1000
LSTM papers

published in 2023
in hydrology!
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Figure 1. Number of hydrological publications related to rainfall-
runoff modeling with LSTM networks over time based on data re-
trieved from Google Scholar in April 2024.

10



ORh no, it’s not a
train after all!

Model proliferation as a social problem



The fragmentation
of land surface
models

~ Demographic Veg

~ Dynamic Veg

Plant Functional Type Distinctions Carbon Cycle . se Change =~ Crops, Irrigation

CtAamatal Dacictanra .\. NaLas Diunp ‘»»4' letlar :, Groundwater

Everybody has an ML
model of their favorite
processes now!

HUNEROOROUEERD

Fisher, R. A., and C. D. Koven (2020), Perspectives on the Future of Land Surface Models and the Challenges of Representing Complex Terrestrial
Systems, Journal of Advances in Modeling Earth Systems, 12(4), doi:10.1029/2018MS001453.



Big efforts are
starting, but the
main focus is on
atmospheric
circulation




We need a vision for
integrating both
modeling approaches



Today, | want to walk through
three case studies, showcasing
methods for ’ physms-based"
ML in hydrology



Part 1. emulation for rapid simulation

Continental scale emulation of ParFlow-CLM to enable
on-demand forecasts of coupled surface/groundwater



Continental scale emulation
of ParFlow-CLM to enable
on-demand forecasts of
coupled surface/groundwater

This work is in collaboration with a large team
from Laura Condon’s lab at University of
Arizona and Reed Maxwell and Peter Melchior
at Princeton University

Large, gridded models give spatiotemporally
complete views of the state of a watershed,
but are difficult to run and calibrate
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But, train emulators based on the models

We are emulating
continental scale, high
resolution (1km)
simulations using
ParFlow-CLM

Resolving full
spatiotemporal dynamics
(3d + time)

Processes vary across
orders of magnitude in
both space and time

1.0
Water Table Depth [m]

18



We used two baseline

architectures for
validation and
intercomparison
purposes
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| developed a neural network architecture
that works like a hydrologic model (FSTR)
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FSTR outperforms 2 standard neural
network architectures on predictions
of predictions of water table depth

RMSE [m]



Pressure

Overall, FSTR is extremely good at
matching full 4-d spatiotemporal patterns
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learning for regional to continental scale terrestrial hydrology. Journal of Advances in Modeling Earth

Systems, 16, e2023MS004095. https://doi.org/10.1029/2023MS004095
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Pressure

Overall, FSTR is extremely good at
matching full 4-d spatiotemporal patterns

Capturing temporal variability Capturing spatial variability

1year daily forecast takes ~30 minutes on 1 GPU

>100x speedup vs Parflow on 3,000 cores

Bennett, A, Tran, H,, De la Fuente, L, Triplett, A, Ma, Y., Melchior, P, et al. (2024). Spatio-temporal machine
learning for regional to continental scale terrestrial hydrology. Journal of Advances in Modeling Earth
Systems, 16, €2023MS004095. https://doi.org/10.1029/2023MS004095
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Bonus materials from this line of work:

Simulation-based inference
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Hull, R., Leonarduzzi, E., De La Fuente, L., Viet Tran, H., Bennett, A., Melchior, P, Maxwell, R. M.,
and Condon, L. E.: Simulation-based inference for parameter estimation of complex
watershed simulators, Hydrol. Earth Syst. Sci., 28, 4685-4713,
https://doi.org/10.5194/hess-28-4685-2024, 2024
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Bonus materials from this line of work:
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Key takeaways:

Model emulation can yield multiple orders of magnitude
of computational speedup

This enables ensemble methods, on-demand forecasting,
parameter estimation/calibration and frugal deployment
abilities

Large scale models of the future will be expected to ship
with emulated versions for rapid exploration, validation,
and teaching



Part 2: embedded parameterization

Deep learned process parameterizations improve
predictions of turbulent heat fluxes in hydrologic models



Deep learned process parameterizations improve
predictions of turbulent heat fluxes in hydrologic models

This work was in collaboration with Bart
Nijssen (University of Washington)

a) b)
Basic idea: Put a neural network into a _ SUMMAX (single timestep) | Turbulent heat flux options|
| t.
process based model — ey States et O
Parameters ||==p Model Met. FOrcings mep- == Ground LE
Our study focused on turbulent heat Surfa:fe teﬁﬁzmre output | SUMMA Fluxes — s
. runo _’ ' SUMMA States sep roun
fluxes, which control ET and Meteoroiogic ||
forcing data Turbulent
temperatures of the land surface haathio Sanopy parameters —> — > Bukie
. (fS:TEOF::iTﬂS? — Met. FOrcings sp- —p Bulk H
We explored three scenarios: f' . s
1. A calibrated PBHM Snowmelt Soil storage Parameters == = BullcLE
Met. Forcings =——p-
2. A one way coupled neural net . ) SO S — sk
3. A two way coupled neural net \_ Update time step
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We gathered data from 60 FluxNet sites,
totalling over 500 site-years of half-hourly data

Closed Shrublands
Croplands
Deciduous Broadleaf Forest
Evergreen Broadleaf Forest
Evergreen Needleleaf Forest
Grasslands

Mixed Forests

Open Shrublands
Permanent wetlands
Savannas

Woody Savannas

29



Both neural net methods show improved
performance over process-based method

Figure shows CDF of performance across all 60 sites at 30 minute timescale
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The introduction of the 2 way coupling also improved the
long-term water balance compared to both SA and NN1W
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Key takeaways:

Allowing model components to dynamically talk to each
other we can have emergent improvements to our
predictive capabilities

Better quantification of land-atmosphere interactions
improves long-term water balance simulations

We currently do not have any scalable technologies to
explore this space, and need to invest in such
developments



Part 4: hybrid models (embedded hypotheses)

Methods for estimation of unknown/unobserved parameters
to improve hydrologic prediction and understanding



Methods for estimation of unknown/unobserved parameters
to improve hydrologic prediction and understanding

First part is in mostly done by my
students, Aamir Lamichhane & Nabin

Differentiable process-based model

Kalauni
T I S e e A = = = N
Last part of this was in collaboration with : fux,6,NNY(wx,6) ..)=y |
Frederik Kratzert (Google) and Wouter , . . !
Knoben (University of Calgary) ) deplacusamecuicingimodel) :
S _ g
| (G AN 0, ) =] | =

Differentiable modeling is an emerging L
and hyped up technique, where you ‘% @

write the “physical” model in an ML Forcings
framework : @ m @ %
/\/\ I parameterization

Then, you can use things like neural Attribntos

networks to replace processes or
estimate parameter values for the
internal equations

S o o o o o e

Observations

Shen, C., Appling, A.P., Gentine, P. et al. Differentiable modelling to unify machine
learning and physical models for geosciences. Nat Rev Earth Environ 4, 552—-567
(2023). https://doi.org/10.1038/s43017-023-00450-9



A primer on differentiable modeling

And a a K(S) function that we want to
Consider a simple, nonlinear reservoir: reproduce (or more accurately, find):

ds z:::::
— =[K(S)- 5

/ —0.050 A

“unknown” —0.075 -

0.050 ~

0.025 A

0.000 ~

—0.025 A

Reservoir conductivity (K)
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0.0 0.2 0.4 0.6 0.8 1.0
Storage (S)
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A primer on differentiable modeling

Given many samples derived from the
system that we want to “learn”

0.9 1 — 5,=0.9
0.8 50=07
50=0.5
0.7 — 50=0.3
— 5p=0.1
0.6
GJ
&
£ 0.5 A
o
%
0.4 1
0.3

time

Fit a model where the parameterization
is “learned” by a neural network:

A5 epy
%_ S
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A primer on differentiable modeling

Given many samples derived from the
system that we want to “learn”:

e Inspecting the internals of the model we
— o find a good fit:
0.6 :
go.s— 0.10 1 € Training points
041 —— target
0.3 —— neural net
0.2 4 0.05

time

0.00 A

Fit a model where the parameterization
is “learned” by a neural network:

—0.05 A

Reservoir conductivity (K)
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JRY, _ S Storage (S)




A primer on differentiable modeling

Precipitation

strbtes ET (P, PET)
If you want to learn more | have a book i
chapter in EarthAl outlines the theory that 6 | o g
drives “differentiable hydrology” Neural =L e’ f
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https://github.com/earth-artificial-intelligence/earth_ai_book_materials/blob/main/chapter_07/ai_for_physics_inspired_hydrology_modeling.ipynb
https://github.com/earth-artificial-intelligence/earth_ai_book_materials/blob/main/chapter_07/ai_for_physics_inspired_hydrology_modeling.ipynb

We are applying this method
to multiple processes:

Forward run of SNOW17-LSTM

This work is led by Aamir Lamichhane

We parameterize the SNOW17 model witha .. i =
LSTM, and train across Snotel sides inthe T 7%

western US to predict snow water
equivalent (SWE) e —

Backpropagation to train the LSTM

Hybrid Model Evaluation Across SNOTEL Sites

: W}_\_
(]

i
2
® .
b g
o a®®

= D
b o6
(e 3
(O ‘W =
Té\ V
)
0 Y RMSE
3 © RMSE=0.05
-y © RMSE-=01
@ RMSE=015
0 02 04 08 10
ing. KCE)

39



We are applying this method

to multiple processes:

This work is led by Aamir Lamichhane E
We parameterize the SNOW17 model with a E

LSTM, and train across Snotel sides in the
western US to predict snow water
equivalent (SWE)

0.0

Our model shows strong improvements in
predictive capabilities broadly

We also find good improvement in key
metrics such as peak SWE

magnitude/timing, and melt periods

CDF of KGE across Test Sites

SNOWI17:
Mean KGE: 0.754
Median KGE: 0.793

SNOW17-LSTM:
Mean KGE: 0.837
Median KGE: 0.862
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—— SNOWI17-LSTM
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Hybrid model improves process representation
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We are applying this method

to multiple processes:

This work is led by Nabin Kalauni

We are developing a coupled mass/energy
balance land surface model to simulate
multiple processes, focusing currently on
L-A interactions and evapotranspiration

Conceptual Coupled Land Surface Model
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We are applying this method
to multiple processes:

ThiS Work is Ied by Nabin Kalauni Sensible Heat Flux Time Series Sensible Heat Flux Comparison )
We are developing a coupled mass/energy
balance land surface model to simulate
multiple processes, focusing currently on

L-A interactions and evapotranspiration

Preliminary results show strong M £
performance, though there are many = | MM %
M .

process interactions and tradeoffs to

edicted (W

=
& & ) o ® ® o © o o 0 200 400
" S B # § P’ § § R B
eX p I O r e & ¢ R o & A @ o Observed (W-m~2)
Date

Big questions in training these types of
models around initialization/spinup!!



But, broader philosophical questions linger.

We are tackling these with a multi-model approach

To do this, we used frozen
LSTM models that were
pre-trained from scratch

We then replace the last
layer “regression head” with
a layer that predicts
parameter values for 3
different hydrologic model
structures

We do this for 140
catchments across the US

dS/dt = f(S(t), x(t),

J

¢
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The medium and full complexity models show almost state

of the art performance when configured flexibly

Figure shows CDF of performance across all 140 sites (SOTA: median KGE ~0.75)

Note: The exact same LSTM is issued for all of these predictions, except green lines

collie arnovic Xinanjiang
1 —— part_static - Median KGE: 0.35 7 1 —— part_static - Median KGE: 0.59 oy 1 —— part_static - Median KGE: 0.71
all_dynamic - Median KGE: 0.46 / all_dynamic - Median KGE: 0.75 5 all_dynamic - Median KGE: 0.73
—— finetune_|lstm - Median KGE: 0.53

—— finetune_|stm - Median KGE: 0.76 ' 7 —— finetune_|lstm - Median KGE: 0.71

KGE KGE KGE

1
1.0
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For each of the model configurations this was done 10 times.
So, do the end models have similar hydrologic behaviors?

To find out we calculate the derived correlation between parameter
values across all runs, and show the distributions as violin plots
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For each of the model configurations this was done 10 times.
So, do the end models have similar hydrologic behaviors?

To find out we calculate the derived correlation between parameter
values across all runs, and show the distributions as violin plots
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For each of the model configurations this was done 10 times.
So, do the end models have similar hydrologic behaviors?

To find out we calculate the derived correlation between parameter
values across all runs, and show the distributions as violin plots

Had performance, but - == E, E,
shows a large degree of . AR A A e ] :
disagreement in values L — - 5. %lq

0.84 0.39 0.83 0.65 0.64

7~
10

| % some classes excluded oty
-1.0
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For each of the model configurations this was done 10 times.
So, do the end models have similar hydrologic behaviors?

To find out we calculate the derived correlation between parameter
values across all runs, and show the distributions as violin plots

Good performance, and - i E, E,
high agreement in ]l e, Y Y || ] :
parameter values il i 1 s g

0.84 0.39 0.83 0.65 0.64

| % some classes excluded ——
0
0.89 0.




Key takeaways:

To me, at least, this seems to show that the LSTM is
learning some “general” hydrologic concepts

Additionally, this is a whiff of evidence that the LSTM is
probably driving the overall predictive performance

We (and others) have only implemented simple methods
so far, there is still a ton to explore in this space



Thanks for listening!
Looking forward to
the discussion

Feel free to email any questions!
andrbenn@arizona.edu
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Core AC-ST-LSTM equations

Cell state update Memory state update Output, hidden, and
action updates
gt = tanh (Wzg * X + Wiy * Htl_l) 92 = tanh (Wz,z * Xt + Wing * Mtlil)
- Ot:U(Wzo*Xt'f'Who*Htlfl+Wca*Ctl+Wmo*Mtl)
it:U(Wzi*Xt—FWhi*Htl_l) 1£:J(W;Z*Xt+sz*Mt 1)
Htl = 0t © tanh (Wi * Ctl,Mtl
fo=0(Wapx Xo + Wy x Hi_,) fl=0 (W% Xy + Wiypx M{7") ‘e (Wi e | D
! ! 3 _ 4 V;Sl: (Whv*Htl_l) O) (Wav*At—l)
Ci=fi0Ci_1 +i©g M =floM+i og
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Even with fast and
robust emulators, we
till want to be able to
improve the
predictions of our
models by (hopefully
finding better
arameter values

https://doi.org/10.1029/2024GL114285
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Abstract Hydrogeologic models generally require gridded subsurface properties, however these inputs are
often difficult to obtain and highly uncertain. Parametrizing computationally expensive models where extensive
calibration is computationally infeasible is a long standing challenge in hydrogeology. Here we present a
machine learning framework to address this challenge. We train an inversion model to learn the relationship
between water table depth and hydraulic conductivity using a small number of physical simulations. For a 31M
grid cell model of the US we demonstrate that the inversion model can produce a reliable K field using only 30
simulations for training. Furthermore, we show that the inversion model captures physically realistic
relationships between variables, even for relationships that were not directly trained on. While there are still
limitations for out of sample parameters, the general framework presented here provides a promising approach
for parametrizing expensive models.

Plain Language Summary Numerical models that simulate groundwater flow often require gridded
data about subsurface properties that are uncertain and difficult to obtain. Parameter adjustments (or calibration)
is often needed to improve model performance. There are many existing approaches for parameter calibration;
however a common limitation is that they require many model simulations, which can be very computationally
expensive. Here we present a machine learning (ML) based inversion method for subsurface parameterization.
‘We train a ML model to learn the relationship between subsurface parameters and simulated water table depth
across the US. Our method produces accurate results and requires a minimal number of simulations.
Furthermore, we demonstrate that this approach has learned physically accurate relationships.

1. Introduction

Hydrogeologic models rely heavily on estimates of subsurface parameters to accurately simulate groundwater
flow. Large, gridded, hydrogeologic models can have millions of cells, each requiring parameterization. These
para s, such as tivity, are extremely difficult to measure at scale and uncertainty impacts the

accuracy and utility of simulations. Determining values for unknown parameters in large, spatially distributed
1
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Originally we were motivated by work from Yueling
Ma, who developed a ML estimate of WTD

WTD estimates

RF model
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Ma, Y., Leonarduzzi, E., Defnet, A., Melchior, P., Condon, L.E.
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Groundwater, 62: 34-43. https://doi.ora/10.1111/gwat. 13362 54
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But first we must demonstrate that the overall method works, so
Amanda Triplett led the effort to develop our inversion framework

Develop the
training data

Physical K Physical
+ static features WTD

o

III
Physical Model
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But first we must demonstrate that the overall method works, so
Amanda Triplett led the effort to develop our inversion framework

Develop the Train the
training data Inversion model
Physical K Physical Physical WTD Inverted
+ static features WTD + static features K
BEEE & i NN

Physical Model Inversion Model
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But first we must demonstrate that the overall method works, so
Amanda Triplett led the effort to develop our inversion framework

Develop the Train the Ensure the
training data iInversion model  parameters work
Physical K Physical Physical WTD Inverted Inverted K Inverted
+ static features WTD + static features + static features WTD

b E-EE -k

Physical Model Inversion Model Physical Model
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This works welll Showing an example from the test set

Test

Predicted

(a) conductivity

[ e N el
Test Predicted
d) water e) water table

:“¥i§§{'“

0.16 %
0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00
10?

10t

10°

Water Table Depth (meters)

101

Hydraulic Conductivity (m h

Difference (meters)

Percent Difference
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The model also learns physically plausible relationships

Of course, we used a particular
set of recharge values for
training, but they are uncertain

To test robustness we used a
“metamorphic test” by applying
perturbations to the recharge,
holding WTD constant

Overall results follow hydrologic
reasoning - to maintain WTD
with more water, a higher
conductivity is required (and
vice versa)

Density

2.0

1.5

0.51

0.0

PME Scalars
—— 0.75 (driest)
— 0.90

0.95
— 1.00 (baseline)
1.05
1.10
— 1.25 (wettest)

1071
Log Saturated Hydraulic Conductivity (m h~1)
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