Bridging Physics and Data: Parameter Estimation and Emulation of Land Surface Models with Machine Learning

Nina Raoult

with contributions from LSCE, ECMWF, and the University of Exeter

ML4LM seminar - 9 July 2025

Solve for Energy / Water / Carbon / Nitrogen budgets

Calibrating parameters can outperform model structural changes

A data assimilation framework allows us to get posterior uncertainty

Parameter Sensitivity

LF

AUX1

BOHZ

AUX

LF

POL

AUX

AUX2

FX

AUXI

AUX2

FX POS

Parameters, by definition, are **time-invariant** favouring batched assimilation methods

Before we can do anything, we need to choose the parameters of interest and their prior ranges

							🔊	ecLand Paramete	ers ᢙ 🗸				,⊘ Sear	h for tools, help, and more (Option + Q)		
			CLM5	Param	neter Li	ist 🕁 🕼 i	File Home	Insert Shar	e Page Layout	Formulas	Data Revie	w View Aut	omate	Help Draw		
			File E	ait vie	w inse	rt Pormat D	9 · 0 ·	🖗 🛛 Aptos Na	arrow 🗸 11 🗸	A^ A	BII⊻	🛛 🗸 🌭 🗸 🔺	✓ A ^a	•• = ~ ⇒ ⊕ ~ General ~ \$€ ~ .%	-08 🖾 🗸 🛱	
	ES parameters	* 0	ዲ Menus	0	⊡ • 1	00% - @	A118	\sim [$\times \sim$ f.	x - Parameter	0						
File	Edit view inser	A1	-	fix test			4	A	В	С	D E	F	G	н		
Q Men	us 5 C A	5	А	В	С		1 Parameter		Value M	1in M	lax Unit	Namelist	Precision	Definition	E	
					2.2		2 RLWCSWE	A	200	150	250 kg.m ⁻³	NAMPARSNOW	JPRB	Constant used to calculate snow liquid water holding capacity	E	
37	▼ ∫ĵx	79	0	1	1	C2_liq_Brun89	3 RLWCSWE	В	0.03	0.01	0.05 -	NAMPARSNOW	JPRB	Constant used to calculate snow liquid water holding capacity	E	
	۵	80				Stomatal resi	4 RLWCSWE	C	0.1	0.08	0.15 -	NAMPARSNOW	JPRB	Constant used to calculate snow liquid water holding capacity	E	
	paramotor	6.0				photosynthes	5 RHOMINS	NA	109	90	115 kg.m ⁻³	NAMPARSNOW	JPRB	Constant used to calculate fresh snow density	E	
JULES	urban laka sail isa	01				medlynslope	6 RHOMINS	SNB	6	5	7 kg.m ⁻³ .K	NAMPARSNOW	JPRB	Constant used to calculate fresh snow density	E	
albene	, urban, iake, soll, ice	600	10	1	1		7 RHOMINS	SNC	26	20	32 kg.m ⁻³ .K	* NAMPARSNOW	JPRB	Constant used to calculate fresh snow density	E	
alband		5110					8 KSNDTOV	/ERA	37000000	1.50E-07 4	4.00E-07 Pa.s	NAMPARSNOW	JPKB	Constant used to calculate snow viscosity following Anderson (1976) E	
catch	_nvg_io	Can					9 KSNDTOV	IERDO	0.081	0.00	0.03 m ³ lor ⁴	NAMPARSNOW	JPKB	Constant used to calculate snow viscosity following Anderson (1976) E	
catch_	ing_io	Hog						ERG .	0.018	1 505 06	0.02 m .kg	NAMPARSNOW	JPKB	Constant used to calculate snow viscosity following Anderson (19/0) E	
omio u	y_io	Fied 82	0	1	1	medlyninterce;	12 PSNDTDE	STR 2.80E-06		0.01	0.1 K ⁻¹	NAMPARSNOW	AMPARSNOW JPRB Show-related constant used to calculate thermal metamo		m E	
emis_i	1vg_10	Sun					12 RSNDTDE	STC	0.042	220	600 m ³ kg ⁻¹	NAMPARSNOW	IDDD	Show-related constant used to calculate thermal metamorphis	m E	
gs_nvi	y_io	Jafil					14	.010	(actual value: 0.0/	-0.032	-0 112	TRAIT ANOTON	51110	Show related constant used to calculate themat metamorphis		
unin_n	/g_io	Erec					15 BSNDTDE	DESTROI		100	200 kg.m ⁻³	3 NAMPARSNOW	JPRB Snov	Snow-related constant used to calculate thermal metamorphism		
vi_nvg	_10	Prat 83	0	1	1	fnps	16 RSNDAM	OB	1.25	1	1.5 -	NAMPARSNOW	JPRB	Constant used to calculate the mobility index for the wind-driven compact		
20_110	y_io	Rou					17 RSNDMOB		295 280 310 k		310 kg.m ⁻³	NAMPARSNOW JPRB (Constant used to calculate the mobility index for the wind-driven compaction inc		
20hm	classic_rivg_io	Rau Dati 84	0	1	1	theta psii	18 RSNDAW		2.868	2.6	3.1 -	NAMPARSNOW	JPRB	Constant used to calculate the wind-driven compaction index	E	
20nm	nvg_io	Rau	Č.			utota_poil		1					1	le la sub-sub-sub-sub-sub-sub-sub-sub-sub-sub-		
ajules	_prtparm	Alle 85	0	1	1	theta_ip		Р	0.95	0.999		Minimum	value is cu	rrent CLM default		
a_w/_	io.	Mor				theta_cj						Minimum value is current CLM default (KD:				
a_ws_	10	Aco 86	0	1	1			Р	0.8	0.999		for C4 PF	Ts only, pe	turbations are applied	1	100 (
ael_i0	max io	Sno									across all	PFTs)		•	100s of parameters	
albeno	_min_io	Sno	0		1											
albert	io	Sno				kc25_coef		1							•	Global vs Spatialised
albert	_max_io	Low						Р (0.000454						
albert	maxu io	Llon 87		1					0.000266						(e.g., PF Is, soil type,)	
alushi	0	Log						1								
almir_l	0	Lea														
alnir.	io.	Llon														
alogs	io.	Log						l								
alpar_	io	Lear reflection coefficient for VIS (photosyntenucally active radiation) 0.1			0.10,0.10,0.10,0.07,0.07,0.10,0.10,0.10,											
alpari_	io in	Lower limit for the leaf reflection coefficient for VIS				0.00,0.00,0.00,0.04,0.04,0.00,0.00,0.00										
aiparu	_10	Upper limit for the least reflection coefficient for VIS 0.15,0.15,0.15,0.15,0.15,0.15,0.15,0.15,											Kannady at al. (2			

Morris' method allows us to identify to the most sensitive parameters and discount the least sensitive

Sobol's method allows us to capture the **interactions** between the parameters

Novick et al. (2022)

While these methods are powerful, they can require many costly model runs

Cost function minimisation

Different algorithm can be used to minimise the cost function, each with pros and cons

 $J(x) = \frac{1}{2}(y - M(x))^{T} \mathbf{R}^{-1}(y - M(x)) + \frac{1}{2}(x - x_{b})^{T} \mathbf{B}^{-1}(x - x_{b})$

Difference between the model given the parameters and observations

Difference between the parameters and their prior value

Gradient descent

Pros: Deterministic and fast - often converging after few iterations. **Cons**: Struggles with local minima, best results with tangent linear/adjoint.

Ensemble methods

Pros: Explores global search space effectively. **Cons**: Slower convergence compared to gradient-based methods. Using information about the curvature of parameter space at the optimum to derive posterior uncertainty

 $T_{\rm low}$

Raoult (2017)

For land surface models, adjoints are hard to maintain, so alternative methods are often used for gradient-based descent.

Beylat et al. (2024) Douglas et al. (2025) Ensemble approaches do not need gradient information

Median and spread in NEE / LE RMSE reductions for 16 first guesses

Equifinality is also a problem for both types of methods

Raoult et al. (2024)

Paramete estimation in action

Examples of how parameter estimation is used practically in land surface modelling

Deriving an operational set of parameters

Identifying structural uncertainty in models

Propagating uncertainty through the system

Since the land surface is heterogeneous, finding an operational set of parameters can be challenge

Spatialised parameters often grouped by vegetation (PFT) or soil types, but are these representative enough?

We can use clustering approaches to reduce dimensionality while capturing a greater spatial variability

- Vegetation type (each for low and high vegetation),
- Soil type,

Predictors:

- RMSE (for latent and sensible heat fluxes)
- Climate (from Köppen–Geiger climate classification)

Fig: Importance of each predictor for each cluster

> optimisation run for a sub-sample of sites for each cluster Example: optimising against sensible and latent heat fluxes using clusters in an operational setting

Identifying structural errors: CH₄ emissions in northern peatlands

Differences in annual methane emissions between observed data (Obs), and simulations

Identifying structural errors: Snow albedo over Greenland

Raoult et al. (2023)

Machine learning

Machine learning can facilitate every aspect of the DA workflow

Gaussian Process emulators powerful tools for parameter estimation

Beylat et al. (prep)

Two are ways Gaussian processes are used in parameter estimation

$$I(\mathbf{x}) = rac{|y(\mathbf{x}) - z|}{\sqrt{\sigma^2(\mathbf{x}) + \sigma_{\mathrm{obs}}^2 + \sigma_{\mathrm{mod}}^2}}$$
 History Matching
Rule out unlikely parameters using a implausibility function

Two are ways Gaussian processes are used in parameter estimation

History Matching framework

To investigate the potential of History Matching, we first set up twin experiment

Site: FR-Fon (2005)

Goal: Recover default values

Model/observation errors set ~N(0, σ) where σ = 0.1 x timeseries

prior ensemble spread

One of the advantages to History Matching is its ability to tune against multiple metrics

One at time parameter perturbation test helps give a sense of properties impacted by each parameter

After 10 waves we have significantly reduced parameter space whilst retaining "true" values in the NROY

Comparing to results found using standard Bayesian Calibration (gradient based approach)

Raoult et al. (2024)

History matching is a great tool for uncertainty quantification

Beylat et al. (prep)

Training RSMD

25.0

22.5

Two are ways Gaussian processes are used in parameter estimation

Emulator uncertainty

Bayesian optimisation framework

Gaussian processes emulators can also be trained iteratively using an acquisition function

This approach is used at ECMWF, using Quaver scorecards as metrics

	arctic	antarctic	s.hem.mid2	tropics30	n.hem.mid2
	rmsef	rmsef	rmsef	rmsef	rmsef
10	0.00.0			00000000	0.0
30	0.000				
50			1000000		
100					-
200					
250					
500				0.0	
700					
850					m
1000					
10					
30		10000			
50					
100					
200					
250					
500					
700					
850					
1000					
-		main			
10					
30					
50					
100					
200					
200					
500					
700					
950					
1000					
1000					
10					
10					
30					
100					
100					
200					
250					
500					
700					
850					
1000					

Emulating the land surface at ECMWF

The AIFS: ECMWF's data-driven weather forecasting systems

OPERATIONAL

Land variables are included in the AIFS!

- Operational AIFSv1 has soil moisture and soil temperature (upper layers)
- Next version will have snow cover!
- Early experiments show AIFSsnow outperforming the physical model

As part of DestinE, we are building data-driven Earth System model

Stand-alone emulator: aiLand

Exploit column model structure to train MLP

- Model resolution-agnostic
- Able to spatial variability
- Easy integration with observations

As we move to more sophisticated emulators of the land surface, can we use these for parameter estimation?

Next steps

By fine tuning against **observations**, can we **learn biases** in the model?

With more information on parameter sensitivities, can we use the emulator for **parameter estimation**?

Can we exploit the **differentiability** of aiLand for land model **data assimilation**?

How do we **couple** aiLand with the other **Earth System components** (physical or machine learnt)?

Fig: aiLand Jacobian

Take home messages:

- **Parameter uncertainty** is one of **large sources** of uncertainty in land surface models
- Data assimilation has been shown to be a powerful tool for reducing this uncertainty.
- Machine learning can facilitate parameter estimation by enhancing computational efficiency and replacing poorly represented processes.
- We can use **deep learning** to emulate land surface models

Nina Raoult, Natalie Douglas, Natasha MacBean, et al. Parameter Estimation in Land Surface Models: Challenges and Opportunities with Data Assimilation and Machine Learning. *ESS Open Archive*. October 08, 2024. DOI: 10.22541/essoar.172838640.01153603/v1

Model development

Parameter optimisation

Citations

- Booth, B. B., Jones, C. D., Collins, M., Totterdell, I. J., Cox, P. M., Sitch, S., ... & Lloyd, J. (2012). High sensitivity of future global warming to land carbon cycle processes. Environmental Research Letters, 7(2), 024002.
- Fisher, R. A., & Koven, C. D. (2020). Perspectives on the future of land surface models and the challenges of representing complex terrestrial systems. *Journal of Advances in Modeling Earth Systems*, *12*(4), e2018MS001453.
- Kennedy, D., Dagon, K., Lawrence, D. M., Fisher, R. A., Sanderson, B. M., Collier, N., ... & Luo, Y. (2024). One-at-a-time parameter perturbation ensemble of the community land model, version 5.1. *Authorea Preprints*.
- Novick, K. A., Ficklin, D. L., Baldocchi, D., Davis, K. J., Ghezzehei, T. A., Konings, A. G., ... & Wood, J. D. (2022). Confronting the water potential information gap. *Nature Geoscience*, *15*(3), 158-164.
- Beylat, S., Raoult, N., Bacour, C., Douglas, N., Quaife, T., Bastrikov, V., ... & Peylin, P. (2025). Towards the Assimilation of Atmospheric CO 2 Concentration Data in a Land Surface Model using Adjoint-free Variational Methods. *EGUsphere*, 2025, 1-33.
- Douglas, N., Quaife, T., & Bannister, R. (2025). Exploring a hybrid ensemble–variational data assimilation technique (4DEnVar) with a simple ecosystem carbon model. Environmental Modelling & Software, 106361.
- Bastrikov, V., MacBean, N., Bacour, C., Santaren, D., Kuppel, S., & Peylin, P. (2018). Land surface model parameter optimisation using in situ flux data: Comparison of gradient-based versus random search algorithms (a case study using ORCHIDEE v1. 9.5. 2). *Geoscientific Model Development*, *11*(12), 4739-4754.
- Raoult, N., Beylat, S., Salter, J. M., Hourdin, F., Bastrikov, V., Ottlé, C., & Peylin, P. (2024). Exploring the potential of history matching for land surface model calibration. Geoscientific Model Development, 17(15), 5779-5801.
- Kuppel, S., Peylin, P., Chevallier, F., Bacour, C., Maignan, F., & Richardson, A. D. (2012). Constraining a global ecosystem model with multi-site eddy-covariance data. *Biogeosciences*, 9(10), 3757-3776.
- Salmon, E., Jégou, F., Guenet, B., Jourdain, L., Qiu, C., Bastrikov, V., ... & Ziemblińska, K. (2022). Assessing methane emissions for northern peatlands in ORCHIDEE-PEAT revision 7020. *Geoscientific Model Development*, *15*(7), 2813-2838.
- Lang, S., Alexe, M., Chantry, M., Dramsch, J., Pinault, F., Raoult, B., ... & Rabier, F. (2024). AIFS--ECMWF's data-driven forecasting system. *arXiv preprint* arXiv:2406.01465.
- Raoult, N., Douglas, N., MacBean, N., Kolassa, J., Quaife, T., Roberts, A. G., ... & Zobitz, J. (2024). Parameter Estimation in Land Surface Models: Challenges and Opportunities with Data Assimilation and Machine Learning. *Authorea Preprints*.

CALMIP: https://aimesproject.org/cal-Imip/

