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Land surface model -> predictuions

Solve for Energy / Water / Carbon / Nitrogen budgets



Uncertainties
Complexity

Fisher & Koven (2020)

The Evolution of Land Surface Modeling

70s 80s 90s 00s 10s



Photosynthesis
(gross primary productivity)

Water flux
(latent heat) 

standard JULES calibrated JULES JULES with structural changes

Calibrating parameters can outperform model structural changes



A data assimilation framework allows us to get posterior uncertainty



in situ data

Parameter
Sensitivity





Parameters, by definition, are time-invariant favouring batched 
assimilation methods

Sequential: one at a time
common in state estimation

Batched: full window
common in parameter estimation



Before we can do anything, we need to choose the parameters of 
interest and their prior ranges

Kennedy et al. (2024)

min max

● 100s of parameters
● Global vs Spatialised 

(e.g., PFTs, soil type,...)



Morris’ method allows us to identify to the most sensitive parameters and 
discount the least sensitive

LST sensitivity

Photosynthesis & Respiration

Bare soil most leastleast

Tropical broadleaf raingreen 

Temperate broadleaf deciduous

Natural C3 grass

Natural C4 grass

C3 Agriculture 

ORCHIDEE Parameters
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Sobol’s method allows us to capture the interactions between the 
parameters

Novick et al. (2022)



Morris
O(100)

Sobol
O(10,000)

While these methods are powerful, they can require many costly model 
runs



Cost function 
minimisation



Gradient descent Pros: Deterministic and fast - often converging after few iterations.
Cons: Struggles with local minima, best results with tangent linear/adjoint.

Pros: Explores global search space effectively.
Cons: Slower convergence compared to gradient-based methods.Ensemble methods

Different algorithm can be used to minimise the cost function, each 
with pros and cons

J(𝒙) = ½( 𝒚-M(𝒙) )TR-1( 𝒚-M(𝒙) ) + ½( 𝒙-𝒙b)TB-1( 𝒙-𝒙b)
Difference between the model 
given the parameters and 
observations

Difference between the 
parameters and their prior 
value



Using information about the curvature of parameter space at the 
optimum to derive posterior uncertainty

Raoult (2017)



For land surface models, adjoints are hard to maintain, so alternative 
methods are often used for gradient-based descent.

Finite differences

4DEnVar
???

Beylat et al. (2024)
Douglas et al. (2025)

Comparing the ability of finite differences & 4DEnVar 
to recover true parameters from a random prior value 

Emulate LSMs with NNs for fast, 
differentiable surrogates

Use LLMs to translate legacy LSMs 
to modern, GPU-friendly languages



Bastrikov et al. (2018)

● Local minima issue during optimization

🡺 Comparison of a Global search (Genetic Algo.) vs Gradient method 

Median and spread in NEE / LE RMSE reductions for 16 first guesses

Gradient
Genetic Algo.

Number of first guesses

Optimization
with fluxnet
data (NEE / LE)
72 sites 
simultaneous
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Genetic Algorithm

● Equi-finality problem is always a difficult issue! 
⇒ Need independent data for Validation

Ensemble approaches do not need gradient information 
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Genetic Algorithm

Median Spread



Performing 200 
different optimisations 
each with different prior 
values

Equifinality is also a problem for both types of methods

BFGS

GA
need to validate against 
independent data

Raoult et al. (2024)



in situ data

Parameter 
estimation in action



Deriving an operational set of parameters

Identifying structural uncertainty in models

Propagating uncertainty through the system

Examples of how parameter estimation is used practically in land 
surface modelling



Since the land surface is heterogeneous, finding an operational set of 
parameters can be challenge

Single vs Multi site optimisation Representative pixels

Spatialised parameters 
often grouped by 
vegetation (PFT) or soil 
types, but are these 
representative enough?

Kuppel et al. (2012)
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Operational set of parameters (clustering)

Arduini: ECMWF technical memo

We can use clustering approaches to reduce dimensionality while 
capturing a greater spatial variability

● Vegetation type (each for low and high vegetation),
● Soil type,
● RMSE (for latent and sensible heat fluxes)
● Climate (from Köppen–Geiger climate classification)

Predictors:

Fig: Importance of each predictor for each cluster

> optimisation run for a sub-sample of 
sites for each cluster



Example: optimising against sensible and latent heat fluxes using 
clusters in an operational setting

Change in “offline” performance

Change in parameter map (“skin” thermal conductivity):

afterbefore

latent heat sensible heat

Impact on coupled forecast (compared to ERA5)
2m dew point

CTL: Bias = - 0.21 ; RMSE = 1.38

 OPT: Bias = - 0.12 ; RMSE = 1.18

Arduini: ECMWF technical memo



Identifying structural errors: CH4 emissions in northern peatlands

Differences in annual methane emissions between observed data (Obs), and simulations
Salmon et al. (2022)

Increasing CH4 emissions 

Sites that are large 
emitters have low active 
carbon available for 
methanogenesis
-> methanogenesis is 
substrate limited in the 
model and so the process 
that can provide enough 
active carbon for 
methanogenesis is missing 
-> improve C availability of 
methanogenesis

Sites that are the lowest 
emitters,  plant transport 
dominates, and the 
parameter for methane 
plant transport efficiency 
parameters differs greatly 
between SS and MS -> 
map this parameter spatial

Not enough C 
available for 
methanogenesis

Parameter 
controlling plant 
transport efficiency 
most important

Emissions up scale to the global northern peatland area

Current calibration is not sufficient to reproduce estimates of the global CH4 fluxes from 

northern peatlands.



Sublimation

Identifying structural errors: Snow albedo over Greenland

Albedo is improved, 
but the model-data of 

other processes are 
degraded

Raoult et al. (2023)



Machine 
learning



Machine learning can facilitate every aspect of the DA workflow



Gaussian Process emulators powerful tools for parameter estimation

sin(x²)+cos(x²)
mean function: m(x)=0
kernel function: squared exponential with length of decorrelation 0.1

The mean µ is the 
prediction of f(X)

The standard deviation σ 
is the uncertainty of our 

prediction.

A Gaussian process defines a 
distribution over functions:

Beylat et al. (prep)



Two are ways Gaussian processes are used in parameter estimation

History Matching
Rule out unlikely parameters using 

a implausibility function

Bayesian Optimisation
Search for optimal parameters 

using a GP and acquisition function



Two are ways Gaussian processes are used in parameter estimation

History Matching
Rule out unlikely parameters using 

a implausibility function

Bayesian Optimisation
Search for optimal parameters 

using a GP and acquisition function

Uncertainty of the 
emulator  

Error obs/model

Predicted metric Target metric



History Matching framework



To investigate the potential of History Matching, we first set up twin 
experiment

Truth Truth + noise

prior ensemble spread

Site: FR-Fon (2005)

Goal: Recover default values

Model/observation errors set ~N(0,𝜎) where 
𝜎 = 0.1 x timeseries



One of the advantages to History Matching is its ability to tune against 
multiple metrics

- Selecting metrics/ priors?

Amplitude Initial carbon stocksSpring & Autumn slopes

One at time parameter perturbation test helps give a 
sense of properties impacted by each parameter 



After 10 waves we have significantly reduced parameter space 
whilst retaining “true” values in the NROY 

Except Root_prof - 
double peak - cutoff 
lowered to 2



Performing 200 different 
optimisations each with 
different prior values (i.e., 
exploiting equifinality)

Comparing to results found using standard Bayesian Calibration (gradient 
based approach)  

VCmax

SLA

Lagecrit

Evapres

Rootprof

Q10

Raoult et al. (2024)



History matching is a great tool for uncertainty 
quantification

Net Carbon flux 

Beylat et al. (prep)

Latent Heat flux



Two are ways Gaussian processes are used in parameter estimation

History Matching
Rule out unlikely parameters using 

a implausibility function

Bayesian Optimisation
Search for optimal parameters 

using a GP and acquisition function

Best current observation

Emulator prediction

“jitter”

Emulator uncertainty 



Define 𝝌: 
p params + 
prior ranges Run model N 

(~10*p) times with 
different 

parameter sets 

 Compute the 
N*M metrics and 

combine 

Run model with 
optimised parameters

N
Y

Define M 
metrics 

(scalars)

Minimise the emulator 
to find best set of 

parameters

Construct one 
emulator for 
the combined 
error metric

Use the acquisition 
function to determine 

which parameter values 
to sample next

More 
iterations?

Bayesian optimisation framework



Gaussian processes emulators can also be trained iteratively using an 
acquisition function

Iteration 0 Iteration 1 Iteration 2
Expected improvement:

Suetzl & Van Niekerk: ECMWF technical memo
ξexploration exploitation



This approach is used at ECMWF, using Quaver scorecards as 
metrics

Global roughness and skin 
conductivity parameters for 
snow and bare soil



Emulating the 
land surface at 
ECMWF



The AIFS: ECMWF’s data-driven weather forecasting systems

Input
Model state:
X(t), X(t-6h)

encoder processor decoder

AIFS MODEL

Output
Prediction:

X(t+6h)

Graph attention

Transformer blocks and windowed 
attention (attention across regional bands).

On a coarser grid than input grid

Graph attention

OPERATIONAL

Lang et al. (2024)

Training Scheme:
1. Train on ERA5
2. Fine-tune on operational analysis 

and lead times up to 72h



● Additional variables: 
● Prognostics: 

● Soil moisture 
(layer 1 + 2) 💧 

● Soil 
temperature 
(layer 1 + 2) 🌡 

● Diagnostics: 
● Cloud covers 

(tcc, lcc, mcc, 
hcc) ☁ 

● Surface 
radiations (strd, 
ssrd) ☀ 

● 100m winds 
(100u, 100v) 
🌬 

● Snow fall (sf) 
❄ 

● Runoff (ro) 🏃

Land variables are included in the AIFS!

● Operational AIFSv1 has soil moisture and soil 
temperature (upper layers)

● Next version will have snow cover!
● Early experiments show AIFSsnow 

outperforming the physical model



As part of DestinE, we are building data-driven Earth System model 



Stand-alone emulator: aiLand

Exploit column model structure to 
train MLP

- Model resolution-agnostic 
- Able to spatial variability 
- Easy integration with 

observations



As we move to more sophisticated emulators of the land surface, can 
we use these for parameter estimation? 



Next steps

Fig: aiLand Jacobian

By fine tuning against observations, can we learn 
biases in the model?

With more information on parameter sensitivities, can 
we use the emulator for parameter estimation?

Can we exploit the differentiability of aiLand for land 
model data assimilation?

How do we couple aiLand with the other Earth System 
components (physical or machine learnt)?



Take home messages:
● Parameter uncertainty is one of large sources of 

uncertainty in land surface models
● Data assimilation has been shown to be a 

powerful tool for reducing this uncertainty.
● Machine learning can facilitate parameter 

estimation by enhancing computational efficiency 
and replacing poorly represented processes.

● We can use deep learning to emulate land surface 
models

Nina Raoult, Natalie Douglas, Natasha MacBean, et al. Parameter 
Estimation in Land Surface Models: Challenges and Opportunities with 
Data Assimilation and Machine Learning. ESS Open Archive . October 
08, 2024. DOI: 10.22541/essoar.172838640.01153603/v1

Model development

Parameter optimisation

https://doi.org/10.22541/essoar.172838640.01153603/v1
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