RivEx: Advancing global surface water science for local benefits

Local e 9

decision gp“’ea
support

Flooding

.‘.

Q‘f‘t N
=— (‘ '

Satelllte

Advancing global river modeling cpability



€S9

The River Experiment Initiative:
Advancing Global Surface Water Science
for Local Societal Benefits

Cédric H. David'!, Augusto Getirana?3, Peirong Lin*
Simon Munier’, Guy Schumann®, Dai Yamazaki’, Paul
Bates®, R. Edward Beighley®, Sylvain Biancamaria',
Aaron Boone?®, Vincent Fortin"', Hyungjun Kim'?, Rodri-
go Paiva®®, Ming Pan', Tamlin Pavelsky's, Jan Polcher’s,
Ahmad Tavakoly'’, Hind Oubanas', Sly Wongchuig'’,
Fabrice Papa'’, Simon Mischel’®, Mohammad J. Touri-
an?, Arnaud Cerbelaud', Jeffrey Wade', Manu Tom', Ali
Nazemi?!, Paola Arias?, and Peter Van Oevelen?

'Jet Propulsion Laboratory, California Institute of Technol-
ogy, Pasadena, CA, USA; °NASA Goddard Space Flight
Center, Greenbelt, MD, USA; 3Science Applications Inter-
national Corporation, Greenbelt, MD, USA; “Institute of
Remote Sensing and GIS, School of Earth and Space Sci-
ences, Peking University, Peking, China; *CNRM, Météo-
France/CNRS, Université de Toulouse, Toulouse, France;
SRSS-Hydro, Kayl, Luxembourg; ’Institute of Industrial
Science, University of Tokyo, Tokyo, Japan; 8University of
Bristol, Bristol, UK; °Northeastern University, Boston, MA,
USA,; '°Laboratoire d'Etudes en Géophysique et Océanog-
raphie Spatiales, Toulouse, France; "Environment and Cli-
mate Change Canada, Dorval, QC, Canada; ?Korea Ad-
vanced Institute of Science & Technology, Daejeon, South
Korea; "*Universidade Federal do Rio Grande do Sul, Porto
Alegre, RS, Brazil; “Center for Western Weather and Wa-
ter Extremes, University of San Diego, La Jolla, CA, USA;
University of North Carolina Chapel Hill, Chapel Hill, NC,
USA,; "®Laboratoire de Météorologie Dynamique, Palaiseau,
France; ""Engineer Research and Development Center,
U.S. Army Corps of Engineers, Vicksburg, MS, USA; *®Insti-
tut National de Recherche pour I'Agriculture, I'Alimentation
et I'Environnement, Montpellier, France; ®Global Runoff
Data Centre, Koblenz, Germany; ®Institute of Geodesy,
University of Stuttgart, Stuttgart, Germany; ?'Department of
Building, Civil and Environmental Engineering, Concordia
University, Montreal, Quebec, Canada; 2?Universidad de
Antioquia, Medellin, Antioquia, Colombia; 2George Mason
University, Fairfax, VA, USA

The writing is on the proverbial wall for Earth’s freshwater
stores: ice sheets are melting (Shepherd et al., 2012), aqui-
fers are emptying (Famiglietti, 2014), reservoirs are drying
(Yao et al., 2023), and glaciers are losing mass (Gardner et
al., 2013), with varied implications for endorheic and exo-
reic basins around the world. Our “working capital” of fresh-
water is changing, therefore challenging the human right to
safe and clean water for drinking and sanitation (United Na-
tions, 2010) for the world’s rapidly growing population. These
trends may lead to an increasing reliance on other freshwater
sources. While Earth’s rivers have a tiny storage, their mighty
flow makes them the most renewable and most accessible
and hence most sustainable (Oki and Kanae, 2006) source
of freshwater. The management of our freshwater portfolio
may very well gradually include a “cash flow” perspective us-
ing this sustainable freshwater source. The powerful flow of
rivers is also a great cause for concern because floods are con-
sistently among the world’s most disastrous natural hazards,
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ranking first in the number of events and in the number of
people affected, second in economic cost, and fourth in total
deaths (United Nations Office for Disaster Risk Reduction,
2020). Yet surprisingly little is known about spatiotemporal
variations of global surface water stores and fluxes, induced
by both natural and anthropogenic processes (Cooley et al.,
2021; Bonnema et al., 2022).

Earth’s rivers and lakes are currently facing pressing environ-
mental and societal challenges. Extreme flood events are ex-
pected to increase with a changing climate (Milly et al., 2002),
hence leading to devastating damages to human life, assets, and
property, further aggravated by human development on flood-
plains. Water resources and river biodiversity are threatened by
human population growth and global environmental change
(Vorosmarty et al., 2010). The administration of transbound-
ary basins is increasingly challenging as water management is
largely impacted by drivers such as historical, legal, economic,
and cultural differences, which could create or increase geopo-
litical tensions among neighbor nations (UNEP, 2016). Nutri-
ent exports through rivers are primarily responsible for dead
zones in the coastal oceans (Diaz and Rosenberg, 2008). River
deltas are increasingly vulnerable to coastal hazards as declin-
ing sediment supply and climate change alter their sediment
budgets (Nienhuis et al., 2020).

Even though access to recent in situ observational data of riv-
ers is known to be globally declining (The Ad Hoc Group et
al., 2001) due to lack of sharing, operational expense, and po-
litical instability (Fekete et al., 2015), some critical data sets are
available (The Global Runoff Data Centre, 2023). In addition
to in situ measurements, river systems can also be observed using
spaceborne remote sensing and existing technology allows for
measurements of water quantity (Smith, 1997) and water qual-
ity (Swain and Sahoo, 2017). Space agencies around the world
have recognized the importance of Earth’s rivers and lakes, and
myriad current and upcoming satellites are either specifically de-
signed to observe rivers or are capable of doing so. Radar nadir
altimetry missions, such as the Topography Experiment (TO-
PEX)/Poseidon, Jason-1, Jason-2, Jason-3, and Sentinel 6 series
or the European Remote-Sensing Satellite (ERS)-1, ERS-2, Env-
isat, Satellite with ARGOS and ALTIKA (SARAL), and Sentinel
3 series, initially designed to measure ocean levels, have shown
their usefulness in monitoring inland waters globally (Crétaux et
al., 2011; Schwatke et al., 2015). Optical satellites like Landsat
and Sentinel 2 and synthetic aperture radars like Sentinel 1 and
the National Aeronautics and Space Administration (NASA)-
Indian Space Research Organization (ISRO) Synthetic Aperture
Radar (NISAR) are also being combined to provide surface wa-
ter extents (Bato et al., 2022). The Surface Water and Ocean
Topography (SWOT) mission, launched in December 2022, is
the first satellite mission specifically designed to observe global
inland water dynamics (Durand et al., 2023). The unprecedent-
ed type, extent, and amount of data being acquired by SWOT

could become a gamechanger in modern surface water sciences.

Multiple existing river models applicable at continental to
global scales have been developed in the past two decades. The
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current generation of models includes—among others—Catch-
ment-Based Macroscale Floodplain (CaMa-Flood; Yamazaki
etal., 2011), Centre National de Recherches Météorologiques
(CNRM) Total Runoff Integrating Pathways (CTRIP; Munier
and Decharme, 2022), Hillslope River Routing (HRR; Beigh-
ley et al., 2009), Hydrological Modeling and Analysis Plat-
form (HyMAP; Getirana et al., 2012), LISFLOOD-FP (Bates
and Roo, 2000), Modelo de Grandes Bacias (MGB; Pontes et
al., 2017), Organizing Carbon and Hydrology In Dynamic
Ecosystems (ORCHIDEE; Polcher et al., 2011), and Rout-
ing Application for Parallel computatlon of Discharge (RAP-
ID; David et al., 2011). Despite the demonstrated existing
strengths of these numerical models, the state of global river
modeling is currently insufficient to leverage existing global
observations, particularly with respect to a comprehensive
evaluation of how human interventions (e.g., dam building,
reservoir operation, flood control structures, and water with-
drawal) alter the spatiotemporal variability of surface waters
(Harding et al., 2015). In addition, and although progress has
been made on the integration of satellite data at the regional
scale (Emery et al., 2020a; Revel et al., 2019; Pedinotti et al.,
2014; Emery et al., 2020b; Paiva et al., 2013; Getirana et al.,
2013; Wongchuig et al., 2024), ingesting spaceborne river
data at the global scale, especially with the deluge of SWOT
data, is still a challenge.

While intercomparison and benchmarking of land surface and
climate models have been well-established in the past three
decades (Henderson-Sellers et al., 1993; Boone et al., 2004;
Meehl et al., 1997; Meehl et al., 2007), river models and their
evaluation are still in drastic need of standardization. Recent
river modeling efforts have been made to quantify streamflow
accuracy as a function of total runoff boundary condition un-
certainties (Getirana et al., 2014; Getirana et al., 2017; David
et al., 2019), parameterization uncertainties (Yamazaki et al.,
2011; Getirana et al., 2013; Decharme et al., 2012) , and an-
thropogenic effects (Hanasaki et al., 2006; Hanazaki et al.,
2022; Tavakoly et al., 2023; Getirana et al., 2023; Dalcin et
al., 2023; Sadki et al., 2023). However, due to conceptual and
structural differences such as model discretization and numer-
ical representation of natural and anthropogenic processes,
the scientific community still lacks standardizations allowing
for the objective comparison of river models, hence hindering
their adoption into decision support activities.

Here, we propose establishing a common strategy for compar-
ing river models called the GEWEX Hydroclimatology Panel
(GHP) River Experiment (RivEx) Crosscutting initiative to
strengthen our modeling systems and eventually facilitate their
integration into local and regional decision-support activities,
hence capitalizing on observational investments—both in situ
and remote—and their impact on scientific discovery and so-
cietal applications. Specifically, we plan for the initiation of
a dedicated data gathering and model comparison campaign
that leverages the past two decades of progress in surface water
modeling and remote sensing to provide physical constraints
on the joint monitoring, understanding, and prediction of
Earth’s surface water cycle. Anthropogenic pressures on global
surface water and their associated climate feedback have the
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potential to be better resolved through these activities, pro-
moting linkage between modern water science and contempo-
rary human societal needs.

We raise the following questions to receive the highest priori-
ties as part of RivEx activities:

1. What is the current state of surface water modeling capa-
bilities? When, where, and why do models perform well
or fail to perform?

2. What are the hotspots of anthropogenic influences on
global surface water, and can their footprint be accounted
for in models?

3. How can global hydrological models be enhanced to in-
gest an increasing number of observations for more accu-
rate reproduction of surface water stores and fluxes with
relevancy at local and regional levels?

We anticipate that the initial RivEx activities will span over
36 months in two consecutive phases. Phase A (18 months)
would produce a common and consistent data set of model
inputs, model parameters, and hydrographic descriptions of
the land surface, as well as a set of common metrics for model
evaluation. Phase B (18 months) would follow with the imple-
mentation of multiple models and their joint evaluation.

Figure 1 (see cover) presents a schematic view of the RivEx
initiative, highlighting its integration of in situ and remote
observations across global to local scales to improve its process
understanding and spatiotemporal characterization, aiming to
eventually better serve local decision support.

The proposed activity directly aligns with two of the three
GEWEX Science Goals (GEWEX, 2021). For Goal 1 (G1),
“Determining the extent to which Earth’s water cycle can be
predicted”, we aim for quantifiable progress at fine spatiotem-
poral scales on two of the subgoals: G1.1 (“Stores”) and G1.2
(“Fluxes”), focusing on continental surface waters. For Goal 3
(G3), “Quantify anthropogenic influences on the water cycle
and our ability to understand and predict changes to Earth’s
water cycle”, our efforts align with subgoals G3.1 (“Anthro-
pogenic forcing of continental scale water availability”), G3.2
(“Water management influences”), and G3.3 (“Variability and
trends of water availability”). As the terrestrial hydrological
cycle undergoes perturbations from human activities such as
water withdrawals and irrigation, anthropogenic construction
(e.g., dams, dikes), and floodplain urbanization, the magni-
tude, timing, and statistical distribution of surface water quan-
tities are being modified. The accurate prediction of stores and
fluxes at fine spatiotemporal scales is becoming an increasing
challenge when using traditional modeling approaches with-
out fusion of observations. By proposing community activities
to ingest novel river, lake, and reservoir observations into nu-
merical models at unprecedented spatiotemporal coverage and
resolution, we aim to improve the quantification of the rate of
change in global surface water networks. Our activities would
directly contribute to understanding the space-time character-
istics along natural and anthropogenic drivers. Such new ap-
proaches are essential for making substantial progress toward
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improving the predictability of such changes. In addition, the
proposed activity also involves producing a consistent set of
new data and metrics, which will be instrumental in evaluating
to what extent anthropogenic activities changed surface waters
from local to continental scales. Although indirectly related,
the proposed activity may also impact GEWEX Science Goal
2, “Quantify the inter-relationships between Earth’s energy,
water, and carbon cycles to advance our understanding of the
system and our ability to predict it across scales”. For example,
evapotranspiration is the most uncertain flux connecting en-
ergy, water, and carbon cycling, but it is not a directly observ-
able quantity at macroscale. Likewise, runoff is not observable
at continental to global scales. An accurate depiction of global
surface water across scales can be used to constrain evapotrans-
piration and runoff more widely than before, and hence con-
strain both water-energy and water-carbon cycling processes.

We aim to promote an inclusive environment. Within the gen-
eral scope envisioned, we welcome inclusion of all ideas, indi-
viduals, and communities that have not (yet) been involved.

References

Bates, PD., and A.R].D. Roo, 2000. A simple raster-based model for flood
inundation simulation. /. Hydrol. 236, 54-77.

Bato, G., et al., 2022. Observational Products for End-Users from Remote Sens-
ing Analysis (OPERA) Product Description.

Beighley, R.E., et al., 2009. Simulating hydrologic and hydraulic processes
throughout the Amazon River Basin. Hydrol. Process. 23, 1221-1235.

Bonnema, M., C.H. David, R.P. de M. Frasson, C. Qaida, and S.-H. Yun,
2022. The Global Surface Area Variations of Lakes and Reservoirs as Seen
from Satellite Remote Sensing. Geophys. Res. Lett. 49, €2022GL098987.

Boone, A., et al., 2004. The Rhone-aggregation land surface scheme inter-
comparison project: An overview. J. Clim. 17, 187-208.

Cooley, S.W., J.C. Ryan, and L.C. Smith, 2021. Human alteration of global
surface water storage variability. Nazure 591, 78-81.

Crétaux, J.-F, et al., 2011. SOLS: A lake database to monitor in the Near
Real Time water level and storage variations from remote sensing data. Adv.

Space Res. 47, 1497-1507.

Dalcin, A.P, et al., 2023. The Role of Reservoir Reoperation to Mitigate
Climate Change Impacts on Hydropower and Environmental Water De-
mands. /. Water Resour. Plan. Manag. 149, 04023005.

David, C.H., et al., 2011. River Network Routing on the NHDPlus Data-
set. J. Hydrometeorol. 12, 913-934.

David, C.H., et al., 2019. Analytical Propagation of Runoff Uncertainty
Into Discharge Uncertainty Through a Large River Network. Geophys. Res.
Lett. 46, 8102-8113.

Decharme, B., et al., 2012. Global off-line evaluation of the ISBA-TRIP
flood model. Clim. Dyn. 38, 1389-1412.

Diaz, R.J. and R. Rosenberg, 2008. Spreading Dead Zones and Conse-
quences for Marine Ecosystems. Science 321, 926.

Durand, M., et al., 2023. A Framework for Estimating Global River Dis-
charge from the Surface Water and Ocean Topography Satellite Mission.
Water Resour. Res. 59, €2021WR031614.

7

Emery, C.M.,, et al., 2020a. Discharge Estimation via Assimilation of Mul-
tisatellite-Based Discharge Products: Case Study Over the Amazon Basin.
IEEE Geosci. Remote Sens. Lett. 1-5.

Emery, C.M., et al., 2020b. Underlying Fundamentals of Kalman Filtering
for River Network Modeling. /. Hydrometeorol. 21, 453-474.

Famiglietti, ].S., 2014. The global groundwater crisis. Nat. Clim Change 4,
945-948.

Fekete, B.M., et al., 2015. Time for in situ renaissance. Science 349, 685.

Gardner, A.S., et al., 2013. A Reconciled Estimate of Glacier Contributions
to Sea Level Rise: 2003 to 2009. Science 340, 852—857.

Gardner, A.S., et al., 2013. A Reconciled Estimate of Glacier Contributions
to Sea Level Rise: 2003 to 2009. Science 340, 852—857.

Getirana, A., A. Boone, and C. Peugeot, 2017. Streamflows over a West
African Basin from the ALMIP2 Model Ensemble. /. Hydrometeorol. 18,
1831-1845.

Getirana, A.C.V,, A. Boone, D. Yamazaki, and N. Mognard, 2013. Auto-
matic parameterization of a flow routing scheme driven by radar altimetry
data: Evaluation in the Amazon basin. Water Resour. Res. 49, 614—629.

Getirana, A, et al,, 2023. Climate and Human Impacts on Hydrological
Processes and Flood Risk in Southern Louisiana. Water Resour. Res. 59,
€2022WR033238.

Getirana, A.C.V,, et al., 2012. The Hydrological Modeling and Analysis
Platform (HyMAP): Evaluation in the Amazon Basin. /. Hydrometeorol. 13,
1641-1665.

Getirana, A.C.V. et al., 2014. Water Balance in the Amazon Basin from a
Land Surface Model Ensemble. /. Hydrometeorol. 15, 2586-2614.

GEWEX, 2021. Global Energy and Water EXchanges (GEWEX) Science
Plan (2023-2032). WCRP Publication 9/2021, 12 pp. https:/fwww.gewex.
orglgewex-content/uploads/2022/1 1/GEWEX-science-plan-v8.pdf.

Hanasaki, N., S. Kanae, and T. Oki, 2006. A reservoir operation scheme for
global river routing models. J. Hydrol. 327, 22-41.

Hanazaki, R., D. Yamazaki, and K. Yoshimura, 2022. Development of a
Reservoir Flood Control Scheme for Global Flood Models. J. Adv. Model.
Earth Syst. 14, €2021MS002944.

Harding, R., J. Polcher, A. Boone, M. Ek, and H. Wheater, 2015. Anthro-
pogenic Influences on the Global Water Cycle - Challenges for the GEWEX
Community. GEWEX Q. Newsl. 27, 6-8.

Henderson-Sellers, A., Z.L. Yang, and R.E. Dickinson, 1993. The Project
for Intercomparison of Land-Surface Parameterization Schemes. Bull. Am.

Meteorol. Soc. 74, 1335-1349.

Meehl, G.A., et al., 2007. THE WCRP CMIP3 Multimodel Dataset: A New
Era in Climate Change Research. Bull. Am. Mereorol. Soc. 88, 1383-1394.

Meehl, G.A., G.J. Boer, C. Covey, M. Latif, and R.]J. Stouffer, 1997. Inter-
comparison makes for a better climate model. Eos Trans. Am. Geophys. Union

78, 445-451.

Milly, PC.D., R.T. Wetherald, K.A. Dunne, and T.L. Delworth, 2002. In-
creasing risk of great floods in a changing climate. Nasure 415, 514-517.

Munier, S., and B. Decharme, 2022. River network and hydro-geomorpho-
logical parameters at 1/12° resolution for global hydrological and climate
studies. Earth Syst Sci Data 14, 2239-2258.

Nienhuis, J.H., et al., 2020. Global-scale human impact on delta morphol-
ogy has led to net land area gain. Nature 577, 514-518.

Quarter 1 2025



GEHCN

Oki, T., and S. Kanae, 2006. Global Hydrological Cycles and World Water
Resources. Science 313, 1068—1072.

Paiva, R.C.D., etal., 2013. Assimilating in situ and radar altimetry data into
a large-scale hydrologic-hydrodynamic model for streamflow forecast in the

Amazon. Hydrol Earth Syst Sci 17, 2929-2946.

Pedinotti, V., A. Boone, S. Ricci, S. Biancamaria, and N. Mognard, 2014. As-
similation of satellite data to optimize large-scale hydrological model parame-

ters: A case study for the SWOT mission. Hydrol Earth Syst Sci 18, 4485-4507.

Polcher, J., et al., 2011. Hydrological modelling on atmospheric grids: Us-
ing graphs of sub-grid elements to transport energy and water. Geosci Model
Dev 16, 2583-2606.

Pontes, PR.M., etal., 2017. MGB-IPH model for hydrological and hydrau-
lic simulation of large floodplain river systems coupled with open source

GIS. Environ. Model. Softw. 94, 1-20.

Revel, M., D. Ikeshima, D. Yamazaki, and S. Kanae, 2019. A Physically Based
Empirical Localization Method for Assimilating Synthetic SWOT Observa-
tions of a Continental-Scale River: A Case Study in the Congo Basin. Wazer 11.

Sadki, M., S. Munier, A. Boone, and S. Ricci, 2023. Implementation and
sensitivity analysis of the Dam-Reservoir OPeration model (DROP v1.0)
over Spain. Geosci Model Dev 16, 427-448.

Schwatke, C., D. Dettmering, W. Bosch, and E Seitz, 2015. DAHITI — an

innovative approach for estimating water level time series over inland waters
using multi-mission satellite altimetry. Hydrol Earth Syst Sci 19, 4345-4364.

Shepherd, A., et al., 2012. A Reconciled Estimate of Ice-Sheet Mass Bal-
ance. Science 338, 1183-1189.

Smith, L.C., 1997. Satellite remote sensing of river inundation area, stage,

and discharge: A review. Hydrol. Process. 11, 1427-1439.

Swain, R., and B. Sahoo, 2017. Improving river water quality monitoring
using satellite data products and a genetic algorithm processing approach.
Sustain. Water Qual. Ecol. 9-10, 88—114.

Tavakoly, A.A., C.H. David, J.L. Gutenson, M.W. Wahl, and M. Follum,
2023. Development of non-data driven reservoir routing in the routing ap-
plication for parallel computatlon of discharge (RAPID) model. Environ.
Model. Sofiw. 161, 105631.

The Ad Hoc Group et al., 2001. Global water data: A newly endangered
species. Eos Trans. Am. Geophys. Union 82, 54-58.

The Global Runoff Data Centre, 2023. GRDC Data Portal. https://portal.
grdc. baf.delapplications/public. html?publicuser=PublicUser.

United Nations, 2010. Resolution 64/292: The Human Right to Water and
Sanitation.

United Nations Environment Programme (UNEP), 2016. Transboundary Riv-
er Basins Status and Trends, Summary for Policy Makers, Volume 3, River Basins.

United Nations Office for Disaster Risk Reduction, 2020. 7he Human Cost
of Disasters: An Overview of the Last 20 Years (2000—-2019).

Vorosmarty, C.J., et al., 2010. Global threats to human water security and
river biodiversity. Nature 467, 555-561.

Wongchuig, S., et al., 2024. Multi-Satellite Data Assimilation for Large-
Scale Hydrological-Hydrodynamic Prediction: Proof of Concept in the
Amazon Basin. Water Resour. Res. 60, €2024WR037155.

Yamazaki, D., S. Kanae, H. Kim, and T. Oki, 2011. A physically based de-
scription of floodplain inundation dynamics in a global river routing model.
Water Resour. Res. 47, W04501.

Yao, E, et al., 2023. Satellites reveal widespread decline in global lake water
storage. Science 380, 743-749.

8

Quarter 1 2025



