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How do we build weather and climate models that are based on physics?
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Earth System model complexity

Development of Climate Models
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1980-2020: The quiet revolution of numerical weather prediction
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Abstract

>0.07 Advances in numerical weather prediction represent a quiet revolution because they have
resulted from a steady accumulation of scientific knowledge and technological advances over

40.01 many years that, with only a few exceptions, have not been associated with the aura of
fundamental physics breakthroughs. Nonetheless, the impact of numerical weather

30.0 : : . : : prediction is among the greatest of any area of physical science. As a computational problem,
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global weather prediction is comparable to the simulation of the human brain and of the
c ECMWF evolution of the early Universe, and it is performed every day at major operational centres

across the world.




2015-today: The digital revolution
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The digital revolution of Earth-system science

Peter Bauer ©'=, Peter D. Dueben’, Torsten Hoefler?, Tiago Quintino 3, Thomas C. Schulthess* and

Nils P. Wedi’

Computational science is crucial for delivering reliable weather and climate predictions. H . despite decades of

hich £
nigh-per

puting experience, there is serious concern about the sustainability of this application in the post-Moore/

Dennard era. Here, we discuss the present limitations in the field and propose the design of a novel infrastructure that is scal-
able and more adaptable to future, yet unknown computing architectures.

he human impact on greenhouse gas concentrations in the

atmosphere and the effects on the climate system have been

documented and explained by a vast resource of scientific
publications, and the conclusion—that anthropogenic greenhouse
gas emissions need to be drastically reduced within a few decades
to avoid a climate catastrophe—is accepted by more than 97% of the
Earth-system science community today'. The pressure to provide
skillful predictions of extremes in a changing climate, for example,
the number and intensity of tropical cyclones and the likelihood of
heatwaves and drought co-occurrence, is particularly high because
the present-day impact of natural hazards at a global level is stag-
gering. In the period 1998-2017, over | million fatalities and several
trillion dollars in economic loss have occurred”. The years between
2010 and 2019 have been the costliest decade on record with the
economic damage reaching US$2.98 trillion—US$1.19 trillion
higher than 2000-2009". Both extreme weather and the potential

commaodity parallel processing. Moore's law drove the economics of
computing by stating that every 18 months, the number of transis-
tors on a chip would double at approximately equal cost. However,
the cost per transistor starts to grow with the latest chip genera-
tions, indicating an end of this law. Therefore, in order to increase
the performance while keeping the cost constant, transistors need to
be used more efficiently.

In this Perspective, we will present potential solutions to adapt
our current algorithmic framework to best exploit what new digital
technologies have to offer, thus paving the way to address the afore-
mentioned challenges. In addition, we will propose the concept of
a generic, scalable and performant prediction system architecture
that allows advancement of our weather and climate prediction
capabilities to the required levels. Powerful machine learning tools
can accelerate progress in nearly all parts of this concept.
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2015-today: The digital revolution to allow for km-scale models

More realistic at global scale Better results via a coupled model system

£ ECMWF Global km-scale models improve realism of simulations
significantly and are now becoming available.
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Km-scale models improve model realism significantly,
but this is not the end of the story...

" Integrated Forecasting System (IFS) ~ Artificial Intelligence Forecasting System (AIFS)

Machinel€arning has currently a huge
impact on Earth system modelling.

Andreas Mueller



2022-today: The machine learning revolution

var | PL Normalized RMSE difference |
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In 2022 machine learned forecast models from Google,
NVIDIA and Huawei are beating conventional weather
S T e———— forecast models in deterministic scores and are orders of
magnitudes faster during inference.
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2022-today: The machine learning revolution

machine learning

The concept:

Take input and output samples from a large data set

Learn to predict outputs from inputs
Predict the output for unseen inputs

The key:

Neural networks can learn a complex task as a “black box”

No previous knowledge about the system is required

More data will allow for better networks

Input layer

Hidden layers
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Machine Learning — Why now?
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Neural networks — the good, the bad, and the ugly

The good news: Neural networks are universal. No matter what function we want to learn, there is a
neural network that can do the job if enough data is available and if the neural network is complex
enough. See the “universal approximation theorem”.

The bad news:

However, neural networks are often not the best tool for the job.
(Take the example to learn an equation.)

They are also very difficult to interpret.

Source:http://neuralnetworksanddeeplearning.com/chap4.html
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How to build a machine learned model with knowledge about the physical system?

TRAINING THE AIFS MACHINE LEARNING (ML) MODEL
The model is highly accurate due to , a dataset of hourly physical states of Earth since 1940.

Sets of training data from ERA5 Example of training loop ML model

Checks A T 23
accuracy
. o
against
output

! 7 INPUT

&8 | output

Corrects
errors to
improve
accuracy

Each step of
the training loop
uses several
ERAS states

Predicts weather
based on physical
state of Earth after
learning from ERA5




Artificial Intelligence Forecasting System

TRAINING

INPUTS OUTPUTS

Atmospheric state: Prediction:
X(t), X(t-6h) X(t+6h)

7N ZalaN T 72 e AN - .

AIFS MODEL (Graph based) >
— e — ==
16 layers

e

AIFSf > 1.+6h

Lots of neural network architectures successful.
All share weights across space to some extent.

_M
~ ECMWF Slide from Mat Chantry




2022-today: The machine learning revolution

var
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In 2022 machine learned forecast models from Google,
NVIDIA and Huawei are beating conventional weather
forecast models in deterministic scores and are orders of
magnitudes faster during inference.

But how do these models actually work?

In 2023 we still had many questions:

Can they avoid the smearing out for long predictions?

Can they learn uncertainty?

Can they extrapolate and faithfully represent extreme events?
Can they represent physically consistent forecasts?

Can they do data assimilation?

Images from Keisler (2022)



2022-today: The machine learning revolution
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Can machine learning models avoid the smearing out for long predictions?
Can machine learning models learn uncertainties?
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We now also have ensemble AIFS. Lang et al. 2024 arxiv:2412.15832v1.

Yes.



Can machine learning models represent extreme events?

Can machine learning models represent physical consistency?
9km CTL Ensemble mean
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Can machine learning models do data assimilation?

Observations Data-assimilation e Post-processing Product
0(10%) data points > 0(107) data points ==» weather forecasts ™| of model output = generation
* il 0(10%9) data points 0(10%9) data points 0(10°) data points

ok

Data assimilation is the process to blend information from observations and model simulations to
find the optimal initial conditions.

Why would it not work?

There are no easy training datasets for observations comparable to ERA5 or WeatherBench.

The further you go back in time, the less observations you have, and the more information needs to be filled.
There will be a huge null-space.

What do you do if satellites appear or disappear?

Why would it work?
All individual steps of conventional data assimilation can be replaced by machine learning.

Generative methods can fill in gaps, for example in down-scaling or ensemble simulations.
Machine learning is amazing.




Can machine learning models do data assimilation?

Quote from Christian Lessig (ECMWF):
We should not only try to replace data assimilation as we may not need data assimilation in the future.

data assimilation system — eqg.-based model
Y
- ~ - - N
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o — | Nt
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./ ./
neural network — neural network ~ ———
0] 5]
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Christian Lessig




Can machine learning models do data assimilation?
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2022-today: The machine learning revolution — What about hybrid?

Nudge physical model to Couple machine learned and

machine learned model conventional components
Husain et al. 2024

: : Deep learn bias from analysis
An interesting scale... P y

100% physics based model 100% machine learned model

Bias corrected with

Parametrisation | \yeak-constraint 4DVar Deep learn the whole physics
emulation Laloyaux and Bonavita Kochkov et al. 2024
Deep learn bias from
Post-processing analysis increments
e.g. Ben Bouallegue e.g. Laloyaux et al. 2022

et al. 2020



What is the best way to combine machine learning and physical models?

One of the general assumptions of the quiet revolution and physical modelling:

The large scales of the model simulations are well resolved and therefore correct.

The small scales of the model simulations are not well resolved and therefore incorrect.

—> Higher resolution leads to better predictions

However... Machine learned models are coarse, fail to represent small scales, and are still competitive.

- Get best of both worlds by nudging large scales of machine learned models to the physical models.
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We checked, it is also working with IFS and AIES.




What is the best way to combine machine learning and physical models?

Or learn the small scales — see NeuralGCM from Google
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Kochkov et al., Nature 632, 1060—1066 (2024)




What is the best way to combine machine learning and physical models?

(a) Global mean temperature at 850 hPa (c) ERA5, 80 Tropical Cyclones (d) ERAS5 Precipitable Water
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Machine learned models can now also do AMIP simulations.
Kochkov et al., Nature 632, 1060—1066 (2024)
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Next step: Machine learned climate simulations

Why would it not work?

« Extrapolation.
 How do you represent CO2?

* Need for more Earth system components including ocean, sea-ice, land, aerosols...
« We will not be able to represent the deep ocean.

« How could we trust the models for predictions that forecast the year 21007

Why would it work?

« We can do AMIP simulations already.

« We can learn all model components needed.

« Who can represent the deep ocean correctly?

« Existing ML models are remarkably robust regarding unseen weather situations.

« The machine learned climate models will be bias free and beat conventional climate
models in almost all comparable diagnostics for today’s climate.



Next step: Machine learned Earth system models

Land models should be easy. Ice models should be easy. The first ocean models exist already.
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Next step: Machine learned climate simulations
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How will physics-based and machine learning modelling develop?

Physics-based:

« Efforts in development will reduce

» They will be replaced by machine learning models in many applications

« They will still be needed — e.g. for grey-swan weather events, tipping points or training data generation
* Development will focus less on forecast scores and more on realism — e.g. km-scale

* Models need to be easy to use, portable and efficient or it will be impossible to find good staff

Machine-learned models:

« Efforts in development will increase

» There will be many different application areas that interact (but how many models eventually?)
« Datasets and models will increase in size (but what will be the limit?)

Modelling centres:

» Revise physics-based modelling — e.g. via tools such as GT4Py

Embrace machine learning

« Embrace federated computing and federated data

* Invest in good visualisation to discover data efficiently

« Consider difference between operational HPC and scalable HPC (see Bauer 2024)

Europe is prepared for these steps, in particular due to initiatives such as DestinE.




Next steps: Foundation models for weather and climate

Weather and climate prediction Climate forecasting  Arctic sea-ice forecasting

Downscaled analyses for Switzerland [YIF3)
40 year analyses for the Nordics [[EXEID
Extreme precipitation nowcasts for Africa
Clouds and precipitation forecasting for the Nordics m i ‘.‘I‘H'J“

Alpine forecasts for Switzerland & ¢

21-day forecasts for the Nordics [IEGZAl

Extreme weather forecasting for France m }

Renewable energy
[P0 Solar and wind production forecasting
Power consumption forecasting
m River inflow forecasting for hydropower
Multi-year weather sceparios for energy market modelling

Water
BLZER Flood prediction

Food security, health, biosphere
m Vegetation modelling for food security
m Temperature forecasting for health

WZED Biosphere fluxes

Extreme weather forecasting for Western Europe

Seasonal forecasls for Western Europe [JEXZID
Global seasonal forecasting m

Global extended-range forecasting m ”

Global medium-range forecasting [EYZID

WeatherGenerator
What about a unification of the machine N _ _ _ _
learning applications via a Foundation Aim: This project will build the machine-
: learned WeatherGenerator — the world’s
Model for Earth system science?

best generative Foundation Model of the
Earth system — that will serve as a Digital

There is already AtmoRep (Lessig et al. Twin in Destination Earth (DestinE).

2023) and Other mOdels SUCh as C“max’ https://www.ecmwf.int/en/about/media-centre/news/2024/weathergenerator-project-
Aurora and Orhbit. aims-recast-machine-learning-earth-system
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https://www.ecmwf.int/en/about/media-centre/news/2024/weathergenerator-project-
aims-recast-machine-learning-earth-system



WeatherGenerator — A foundation model for weather and climate {!/@ggj}..}
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https://www.ecmwf.int/en/about/media-centre/news/2024/weathergenerator-project-
aims-recast-machine-learning-earth-system




What is special about machine learning for land modelling?

Can we build machine learned land models?

* Yes, machine learning and parameter optimisation is nothing new for land modelling (e.g. Raoult et al. 2024).
* Yes, to learn a land model is comparably easy — small problem, zero dimensional.

« But it will be difficult to learn models that enable to represent long term memory and trends.

What are the limits for machine-learned land models?
* The pure model emulation is not too helpful as land models are comparably cheap.
« Learning is only possible if we have the data, and data is not very well distributed.
* For which tasks is the data we have enough?
 How can we apply learned models in data poor regions (in space and in future times)?
 How do we know where and if we can generalise?
« What are the surface fields that we actually need and can describe best?

What are the interesting science questions?

« How can we optimise land models to work in a coupled Earth system model?
 How do we know when we have reached limits of our machine-learned land models?
 How can we trust machine learned land models in climate simulations?

* When will the assumption of zero-dimensionality break down?




What have we learned? Many thanks! Peter.Dueben@ecmwf.int

The quiet revolution (1980-2020):
« Steady investment into Earth system modelling and Earth system observations made a difference.

The digital revolution (2015-today):
« Conventional models need to be made future proof via new software and hardware standards.
« Large projects such as DestinE make km-scale models possible today and will make a difference.

The machine learning revolution (2022-today):

 Models such as AIFS can beat physics-based models for deterministic and ensemble predictions.
« There is loads of interesting science to explore regarding hybrid models and predictability.

 We may soon see machine learning models that can do data assimilation and climate modelling.

The next step: Models will be better, tools will be easier, and data/HPC will be federated
« ECMWEF will build a machine-learned Earth system model

« WeatherGenerator will build a machine-learned foundation model for Earth system science.
« To achieve this needs programmes such as Destination Earth, Earth-2 and EVE.

ffﬁfoi o The WeatherGenerator project is funded by the European
ioi/ _ . o ot Union under grant agreement No 101187947. The
{%oc\c’?f;’ “{; tﬁﬁ’ (ﬁ e S I WG C e e MAELSTROM, ESIWACE and Hanami projects have

? ' S R Funded by the received funding from the EuroHPC-Joint Undertaking under

WeatherGenerator European Union grant agreement No 955513, 101093054 and 101136269.
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