Seasonal hydrologic prediction + HEPEX + GHP = a proposed high-impact cross-cutting project

Andy Wood

NCAR Research Applications Laboratory Boulder, Colorado

Outline

- HEPEX Background
- The Value of Seasonal Hydrologic Prediction
 - An example from practice
- Hydrologic Prediction Science & Research
- A HEPEX-GHP Intercomparison Experiment?

HEPEX Overview

HEPEX mission:

To demonstrate the added value of hydrological ensemble predictions (HEPS) for emergency management and water resources sectors to make decisions benefitting the economy, public health and safety.

Key questions of HEPEX:

- What adaptations are required for meteorological ensemble systems to be coupled with hydrological ensemble systems?
- How should the existing hydrological ensemble prediction systems evolve to account for all sources of uncertainty within a forecast?
- What is the best way for the user community to take advantage of ensemble forecasts and to make better decisions based on them?

HEPEX is now best known via an active website

HEPEX Activities

- Community Meetings & Workshops
- Many smaller sessions: AGU, EGU, GEWEX, EMS, AMS, etc.
- Articles and Journal Special Issues
 - HESS: HEPEX Special Issue
 - EOS Article
 - BAMS Article
 - ASL Special Issues (2)
 - Hydrological Sciences
- Test-bed Projects (several)
- Experiments (several)
- Online Community
- Highlight Case Studies
- Webinars (regular)

HEPEX: Merging Science with Pragmatism

The Basics: Making a Prediction System Work → Models, Data, Systems

HEPEX: Making a Prediction System Work *Well* → Methods & Tradeoffs

Outline

- HEPEX Background
- The Value of Seasonal Hydrologic Prediction
 - An example from practice
- Hydrologic Prediction Science & Research
- A HEPEX-GHP Intercomparison Experiment?

The Arid Lands

Many droughts will occur; many seasons in a long series will be fruitless; and it may be doubted whether, on the whole, agriculture will prove remunerative.

John Wesley Powell, 1879

Colorado River

- 25 million people in 7 states rely on Colorado River water
- 3.5 million acres of irrigation
- 85% of runoff comes from above 9000 feet
- Mean annual discharge is ... (?)
- Storage capacity is about 60 MAF (4-5 times mean annual flow)

Management using Seasonal Flow Forecasts

Upper Colorado Reservoir Management

Water transfer decision from upper to lower basin states depends on forecast

Lake Powell				
Elevation	Opertaions According	Live Storage		
(feet)	to Interim Guidelines	(MAF)		
3,700 3,636 - 3,666	Equalization Tier Equalize, Avoid Spills or Release 8.23 MAF	24.3 15.5 - 19.3		
(2008-2026)		(2008-2026)		
(2008-2020)	Upper Elevation Balancing Tier ¹	(2008-2020)		
	Release 8.23 MAF;			
	if Lak Mead < 1,075 feet,			
3,635	a min/max release of	15.4		
1/1/10	7.0 and 9.0 MAF	1/1/010Proj		
Projection		ection		
	Mid-Elevation Release Tier Release 7.48 MAF; if Lake Mead < 1,025 feet, Release 8.23 MAF;			
3,525		5.9		
0,020	Lower Elevation	3.7		
3,490	Balancing Tier Balance contents with a min/max release of 7.0 and 9.5 MAF	4.0		
3,370		0		

Lake Mead				
Elevation	Opertaions According	Live Storage		
(feet)	to Interim Guidelines	(MAF)		
1,220 1,200	Flood Control, 70R or ICS Surplus	25.9 22.9		
1,200	Domestic or ICS Surplus	22.5		
1,145		15.9		
1,098 1/1/10 Projection	Normal Operations or ICS Surplus	11.4 1/1/10 Projection		
1,075	· · · · · · · · · · · · · · · · · · ·	9.4		
1,050				
1,025				
1,000		5		
895	A STATE OF THE STA			

Simple Statistical Forecasting

Sample Equation for April 1 forecast of April-July Flow:

April-July volume Weber @ Oakley =

- + 3.50 * Apr 1st Smith & Morehouse (SMMU1) Snow Water Equivalent
- + 1.66 * Apr 1st Trial Lake (TRLU1) Snow Water Equivalent
- + 2.40 * Apr 1st Chalk Creek #1 (CHCU1) Snow Water Equivalent
- 28.27

End-to-End Operational Forecast Process

Data Preparation

Modeling

Dissemination

Temperature index model for simulating snowpack accumulation and melt →

Sacramento Soil Moisture Accounting Model

Hydrologic Ensemble Prediction Experiment

Stakeholder Example

- Metropolitan Water District (California)
 - Supplies water to ~20m residents in southern California (including L.A.)
 - Issues weekly water supply conditions map (right) based on RFC, CA DWR, and NRCS forecasts and data

METROPOLITAN'S WATER SUPPLY CONDITIONS

s of:

Unless otherwise

For Questions/Comments Contact Demetri Polyzos at (213) 217-7646 or dpolyzos@mwdh2o.com

Seasonal streamflow prediction is critical

Value

Damage from 1/10 AZ storm: \$11m^a

Damage from 6/10 UT flooding: \$6.5m^a

Damage from 12/10 UT/NV storm: \$11m^a

Damage from 09/13 Boulder flood: \$1b^c

Colorado River average runoff: 12.4 MAF

Replacement value at \$330/AF -> \$4b^b

Indirect multiplier ~3?\$12b

The economic value of water resources typically greater than flooding damages

- Sources:
- a: WFO, FEMA (via stormdata); b: MWD (via Hasencamp, private communication)
- c: Wikipedia

GEWEX REGIONAL HYDROCLIMATE PROJECTS

Outline

- HEPEX Background
- The Value of Seasonal Hydrologic Prediction
 - An example from practice
- Hydrologic Prediction Science & Research
- A HEPEX-GHP Intercomparison Experiment?

hydrologic prediction science questions

Water Cycle (from NASA)

Hydrologic Ensemble Prediction Experiment

<u>Hydrological Prediction</u>: How well can we estimate catchment dynamics?

- Accuracy in precipitation and temperature estimates
- Fidelity of hydrology models – process/structure
- Effectiveness of hydrologic data assimilation methods

Atmospheric predictability: How well can we forecast the weather and climate?

Opportunities: How do these areas influence variability informing different water applications?

Hydro-climatic/Seasonal Variation in Watershed Moisture

- humid basin
- uniform rainfall
- no snow
- small cycle driven by ET

- cold basin
- drier summers
- deep snow
- large seasonal cycle
- April snowmelt dominates May-June runoff

Assessing the sources of flow forecast skill

vary predictor uncertainty → measure streamflow forecast uncertainty

a. ESP

c. Climatology

b. "Reverse-ESP" forecast

d. VESPA forecast

Snow-Driven Basin in the Western US

- Wide seasonal variations in influence of different skill sources
- cold forecast period (Dec-Feb) -- forecast skill depends mainly on initial condition accuracy
- warmer snowmelt forecast period forecast skill depends strongly on met. forecast skill

IHC: initial Hydrologic Conditions SCF: Seasonal Climate Forecasts

Flow Forecast Skill Elasticities

- The % change in flow forecast skill versus per % change in predictor source skill
- Can help estimate the benefits of effort to improve forecasts in each area
- This research is funded by water management agencies – Reclamation and US Army Corps of Engineers

North American Multi-Model Ensemble at NOAA

The NMME is the latest/greatest effort at climate prediction from N.A.:
- models vary in skill each month, and by region

GEWEX Seasonal Forecast Research Examples

There is a large-scale GEWEXsupported line of seasonal hydrologic prediction work.

- Less connected with users, looking at underlying science issues.
- A popular target application is drought monitoring/prediction.

Eric Wood has just completed an assessment of using National Multi-model Ensemble climate prediction in hydrologic LSMs for RHP basin seasonal prediction. (accepted in BAMS, Xin et al, 2015)

Hydrologic Ensemble Prediction EXperin

GEWEX Seasonal Forecast Research Examples

Eric Wood's NMME climate prediction in hydrologic LSMs for RHP basin seasonal prediction.
(accepted in BAMS, Xin et al, 2015)

Rainfall skill

Individual model prediction skill varies

- For seasonal time scales, precipitation skill varies from poor to moderate
 - depends on season and lead time
 - depends on location
 - may depend on largescale 'climate state/ regime'

East R at Almont, Co, precip (very difficult location)

The urgency of understanding predictability

News > Latin America

Drought-Hit Sao Paulo Has Two Months of Water Left

Published 8 December 2014

The emergency reserves should last for two months, but water use is also expected to increase during the holiday season.

Hydrologic Ensemble Prediction Experiment

The urgency of understanding predictability

NMME forecast for precip (terciles)

AU Seasonal streamflow forecasting:

dynamical-statistical

Forecast quantiles and observations versus year
Unrequiated inflow to Hume Dam

QJ Wang, CSIRO

http://www.bom.gov.au/water/ssf/

Efficiency – Complexity Tradeoff

- A number of forecasting centers around the world have offered seasonal streamflow predictions for decades (over 8 in the US, for instance).
 - Other countries/agencies are interested in starting such services.
- The approaches span a wide range of data requirements & complexity. From simplest to most complex (light to heavy data lift):
 - a. regression of flow on in situ obs (rainfall, SWE, flow)
 - 'regression' = regressive technique, ie PCR, MLR, etc.
 - b. the same but with teleconnection indices included as predictors
 - c. the same but with custom climate state predictors (eg EOFs of SST) or climate forecasts
 - d. land model based ensemble simulation (eg ESP or HEPS) without climate forecast
 - possibly with short to medium range prediction embedded
 - e. climate index (or custom index) weighted ESP
 - f. climate forecast weighted ESP (eg using CFSv2 or NMME in the US)
 - g. climate forecast downscaled outputs with weather generation for land model ESP/
 - from one land/climate model or multi-model; from simple land model to hyper-resolution
 - h. d-g with statistical post-processing to correct model bias
 - i. d-g with post-processing to correct bias and merge with other predictions (cf BOM approach)
 - j. d-g with DA to correct land model errors (particularly with snow variables)
 - k. d-g with both post-processing AND DA

simple statistical approaches can be viewed as benchmark for dynamical approaches

Outline

- HEPEX Background
- The Value of Seasonal Hydrologic Prediction
 - An example from practice
- Hydrologic Prediction Science & Research
- A HEPEX-GHP Intercomparison Experiment?

Relationship between GHP and HEPEX

A common motivation: the existence and impacts of floods and droughts

RHPs

Improving scientific understanding of regionally significant features water & energy cycle, leading to:

- Better models
- Better datasets

HEPEX

Applying improved scientific understanding, data and models to improve operational prediction of floods and droughts

Prediction Applications

HEPEX methods filtering into operations for

- Water/energy management
 - Hazard mitigation

Applications motivate & inform the research

- tighten focus
- change level of scrutiny

R2O/O2R – an arduous trek requiring tradeoffs

Seasonal Forecasting Cross-cut Project Concepts

Possible thrusts

- GEWEX-ish: Science-oriented exploration of seasonal climate and hydrologic predictability from state-of-the-art datasets and models in RCP/RHP study domains. - Eric Wood would lead
- HEPEX-ish: How well do methods across the statistical-dynamical spectrum harness local-to-regional scale hydrometeorological predictability – for a basin collection determined from water resources considerations. - Andy Wood / HEPEX would lead

Experimental Outline

- Set leads/participants (solicit through HEPEX & GHPs)
- 2. Coordinate:
 - define study basins
 - protocol for evaluation
 - scope/timeline of experiments
- 3. Assemble data, models, methods
- 4. Predictability Experiments
 - What sources of predictability dominate seasonally, for various leads & predictands, locations, variables?
 - Where are the greatest uncertainties / weaknesses and scientific limits?
- 5. Approach Intercomparisons
 - What is the marginal benefit of dynamical approaches over statistical ones for various types of prediction? Where are dynamics necessary?
- Dissemination / Outreach
 - Website key, publication, also local interaction with users

Relevant Recent & Future Events

Recent

- BfG (Koblenz) hosted a recent meeting on seasonal forecasting for water management
 - will lead to a Guidelines document for WMO on Seasonal Prediction (led by Jan Danhelka, CHMI).
 - http://www.bafg.de/DE/05 Wissen/02 Veranst/2014 10 15.html

Future

- HEPEX Seasonal Forecast Meeting hosted by SMHI, Sweden, September 2015
- Summer short course on Seasonal Forecasting?
- Seas. Climate/Hydrology Ensemble Prediction Experiment (SCHEPEX ...)?

Applications and Elements

- Multiple statistical models
 - [Schepen, Wang & Robertson JCLI 2012], [Wang, Schepen & Robertson JCLI 2012]
- Combining statistical and dynamical models
 - [Schepen, Wang & Robertson JGR in press]
- GCM calibration, bridging and merging
 - [Schepen, Wang & Robertson JCLI in review]
- Combining multiple GCMs
 - [Schepen & Wang MWR in review]
- Forecasting monthly rainfalls to long lead times
 - [Hawthorne, Wang, Schepen & Robertson WRR in review]
- Forecasting seasonal rainfall across China
 - [Peng, Wang, Bennett, Pokhrel & Wang JOH in review]
- Forecasting seasonal temperature
- Forecasting Hydrology / Streamflow

