Managed water resource systems: the human dimension of the global water cycle

Richard Harding

Global Water Use

Global Water Resources

TOTAL ANNUAL LAND PRECIPITATION = $115 \times 10^3 \text{ KM}^3$ TOTAL ANNUAL RUNOFF = $49 \times 10^3 \text{ KM}^3$ TOTAL CAPACITY OF RESERVOIRS = $7.4 \times 10^3 \text{ KM}^3$ ANNUAL WATER USE FOR IRRIGATION = $\sim 1.5 \times 10^3 \text{ KM}^3$ UNSUSTAINABLE GROUNDWATER EXTRACTION = $0.23 \times 10^3 \text{ KM}^3 \text{ Y}^{-1}$

TOTAL GLOBAL LAND AREA = $149X10^3 \text{ KM}^2$ TOTAL IRRIGATED AREA (YEAR 2000) = $2.6 \times 10^3 \text{ KM}^2$

Global land

Precipitation

Mean: 872 mm yr⁻¹

Evaporation

Mean: 499 mm yr⁻¹ Range: 415-586 mm yr⁻¹

Runoff

Mean: 375 mm yr⁻¹
Range: 290-457 mm yr⁻¹

 Δ Soil = 16 mm, Δ Snow=33mm

Percentage Irrigated area

India: Water: sources and use

Renewable freshwater resources

Precipitation (long-term average 1 170 mm/yr)	3.8 x10 ³ km ³ yr ⁻¹
Internal renewable water resources (long-term average)	1.4 x10 ³ km ³ yr ⁻¹
Total actual renewable water resources	1.9 x10 ³ km ³ yr ⁻¹
Total dam capacity 2005	224 km³

Water withdrawal

Total water withdrawal 2010	761 km³ yr ⁻¹
- irrigation + livestock 2010	688 km³ yr ⁻¹
- municipalities 2010	56 km³ yr ⁻¹
-industry 2010	17 km³ yr ⁻¹
per inhabitant 2010	630 m3/yr
Surface water and groundwater withdraw as %	
of total actual renewable water resources 2010	40 %
Non-renewable extraction (Wada et al 2011)	68 km³ yr ⁻¹

Water Scarcity 20th and 21st C

Figure 1: Water stress, calculated as the ratio between water withdrawals and availability, for the late 20th and 21st centuries (see Flörke and Eisner 2011).

Human Impact on river discharge

Haddeland et al. 2014

WaterMIP: Land Surface Hydrology Model/ Global Hydrology Model Intercomparison

Mean annual water fluxes (mm year-1)

Estimating water resources

Scenarios and policy

Climate (rainfall – evaporation)

Catchment characteristics (geology, topography, land use, groundwater)

Demand (agriculture, domestic, industry)

Human interventions (dams, extractions, irrigation ...)

River flows, groundwater etc

Demand and allocation into Climate models?

Figure 1. A fully coupled framework for inclusion of water resources management in a typical LSS grid.

Human impacts - interactions

Crosscut: Modelling Human Impacts on freshwater 1: topics

Quantifying the Human Impact on the World's freshwater

- Water supply uncertainties in P-E
- Demand linked to supply
- Management seasonality and extremes, ground water extraction, basin transfers
- Land cover? irrigation, rainfed agriculture and deforestation etc
 - Coupled models?
 - Scale regional vs global?
 - Data issues
 - Complexity
 - Role of calibration
 - Scenarios

Crosscut: Modelling Human Impacts on freshwater 2: activities

Progress so far:

Hague July 2014 – proposed

Informal committee: Richard Harding, Howard Wheater, Taikan Oki, Ruby Leung, Jan Polcher, Eric Wood, Ali Nazemi

Pasadena Dec 2014 – draft plan

- Ongoing review (web based? what are we doing?
 - where are the global data gaps?
- Modelling Workshops with GLASS
 - RHPs
 - link to local operational models
- Inter-comparison? land MiP
- Sessions at International meeting

