

Proudly Operated by Baffelle Since 1965

Modeling Mesoscale Convective Systems

L. Ruby Leung Pacific Northwest National Laboratory, Richland, WA

GEWEX SSG meeting, 25-28 February, 2019, Geneva, Switzerland

MCSs are ubiquitous in the global tropics

- Mesoscale convective systems (MCSs) account for ~ 50-60% of tropical rainfall
- The top heavy heating profile of MCSs produces robust upper-level circulation

Pacific Northwest

Proudly Operated by Battelle Since 1965

MCSs produce severe weather and flooding over the US

- Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965
- MCSs produce 30-70% warm season rainfall and over half of the extreme daily rainfall in the US Great Plains
- Observed extreme rainfall in central U.S. has been increasing in the past several decades
- Have MCSs changed in the past, and how will they change in the future?

Extreme event types in

Changes in observed 20-yr return value of daily precipitation (1948-2010)

Changes in MCS rainfall and characteristics in the past decades

Proudly Operated by Battelle Since 1965

Trend in MCS mean rainfall in spring

 Some regions in Midwest experienced 0.4-0.8 mm day⁻¹ per decade (20-40%) increase in MCS precipitation between 1979-2014 Trend in 95[%] exceedance frequency

 95th percentile MCS hourly rain-rate increased

Averaged MCS lifetime increases by 4% per decade, long-lasting MCS increases by 7% per decade

Challenges for climate modeling

Climate models with parameterized convection exhibit significant biases in simulating precipitation (mean, diurnal cycle, intensity) and surface temperature

Daily precipitation distribution

Pacific Northwest

Operated by **Battelle** Since 1965

A fundamental challenge

Resolving storm structures and two-way interactions may be key to modeling precipitation and circulation in the tropics and mid-latitude during warm season

Cloud microphysics and convection parameterizations

Large-scale circulation

Precipitation

Modeling MCSs in climate models

Three modeling approaches with computational requirements within reach for climate simulations:

Model for Prediction Across Scales (MPAS)

MCS characteristics reasonably simulated

- WRF convection permitting simulations at 4 km grid spacing for two warm seasons without convection parameterization
- Simulations reproduced observed MCS statistics

8

Positive feedback from long-lived MCSs to the environment supports their longevity

Proudly Operated by Battelle Since 1965

Long-lived MCSs produce a midlevel circulation anomaly that maintains the MCSs and strengthens the environmental trough

Interactions between MCSs and their large-scale environment

35

Microphysical influence on MCS evolution

Comparing WRF convection permitting simulations with Morrison vs. Thompson microphysics schemes
Morrison
Thompson produced more

→ 3 m/s

(Feng et al. 2018 JAMES)

⁷⁰⁰ hPa winds and equivalent potential temperature anomalies

MCSs in April and August

Proudly Operated by Battelle Since 1965

Model evaluation using initialized forecasts: 4 km (no CP), 12 and 25 km (with CP)

MCS precipitation in April

MCS precipitation in August

MCS large-scale environment

- Strong baroclinic forcing and low level jet support MCS development in spring
- Only weak forcing such as mid-tropospheric perturbations is enough to support MCS development in a thermodynamically favorable environment in summer
- Limitations in GCM microphysics parameterizations may also be responsible for the biases

Strong synoptic forcing for an MCS in April High pressure system and an MCS in August

Energy Exascale Earth System Model (E3SM)

- E3SM v1 includes a low resolution (LR ~ 100 km) and a high resolution (HR ~ 25 km) configuration
- A "proof-of-concept" regional refinement model (RRM) with 25 km over North America and 100 km outside has been tested, but improvements are minimal in the Great Plains

Pacific Northwest

Proudly Operated by Battelle Since 1965

Climate Model Development and Validation (CMDV-MCS) project

Proudly Operated by Battelle Since 1965

Evaluation of E3SM using GPM and NexRAD

(Source: Steve Ghan and Jiwen Fan)

E3SM-MMF and global cloud resolving modeling

E3SM-MMF (ongoing testing of MMF embedded in E3SM at 30km grid spacing)

Development of a global cloud resolving model with RRM for testing

- Nonhydrostatic spectral element dynamical core at 3 km grid spacing
- Dynamical core being ported to GPU and rewritten in C++
- Coupled with existing physics parameterizations
- Development of new physics parameterization more suitable for cloud resolving applications

Ongoing work: Characterizing MCSs globally

Track MCSs using global geostationary data and GPM dualfrequency precipitation radar (DPR) overpass data to construct a global "hybrid tracking-overpass" MCS database

Development of MCS tracking and metrics

Ongoing work: Characterizing impacts of MCSs on surface water budgets and flooding in the U.S.

- Use water tagging combined with the U.S. MCS database to trace MCS precipitation through surface and subsurface processes in land surface models
- Use coupled models to quantify the impacts of MCSs on the terrestrial water balance and land-atmosphere interactions
- Relate MCS characteristics and antecedent soil moisture to flooding

A land surface hydrological view is missing

Water tagging in a land surface model

- MCSs are ubiquitous and play important roles in precipitation and largescale circulation
- Most climate models do not simulate MCSs, as evidenced by their dry/ warm biases and erroneous diurnal cycle of precipitation
- Convection permitting modeling holds some promises to simulate MCS cloud structures – important connections between large-scale circulation and precipitation
- Different approaches are being developed and tested
- MCS tracking, MCS data base, and MCS metrics are being developed to support analysis and modeling