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MCSs are ubiquitous in the global tropics

» Mesoscale convective systems (MCSs) account for ™
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50-60% of tropical rainfall

» The top heavy heating profile of MCSs produces robust upper-level circulation

Latent heating profiles
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MCSs produce severe weather and flooding "
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» MCSs produce 30-70% warm season rainfall and over half of the extreme daily rainfall in the US
Great Plains

» Observed extreme rainfall in central U.S. has been increasing in the past several decades
» Have MCSs changed in the past, and how will they change in the future?

Changes in observed 20-yr return value of

Extreme event types in daily precipitation (1948-2010)

Central and Eastern US

oy .7 3 * > '.';_: ‘,}"\_A 3
45 - . 3 . .. .. ‘. X f‘
\ Oy Y . Soswie :
) \ o3 AT S
Tropical % R T3 i, S
o™ ‘b : -:—-v-*i" Taoie bo v
£30 # Synoptic ol p B RN el P S e
22 ™ MCS 7 B &, R T T ot g M 1 P
o 7 p - s s LR ok }_. 2 ’
S5 / @ ") h $ :" 5 ::‘ § i :
815 “ o o =
£ “ < «. 3 £
g 10 e - a‘... . s ._4}_.’ -
5 ﬂg :-‘”?"" 3, “"-;.:
0 & o -
Whe
' Q?\\\
N f;\ N
(Stevenson & Schumacher 2014 MWR)

(Kunkel et al. 2013 BAMS) February 26,2019 | 3



Changes in MCS rainfall and characteristics in ~7
the past decades

Trend in MCS mean rainfall in spring
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Some regions in Midwest

experienced 0.4-0.8 mm day? per
decade (20-40%) increase in MICS
precipitation between 1979-2014

Trend in 95” exceedance frequency

» 95t percentile MCS hourly
rain-rate increased

(Feng et al. 2016 Nat. Commun.)
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Trend in MCS lifetime
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» Averaged MCS lifetime increases
by 4% per decade, long-lasting
MCS increases by 7% per decade
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Challenges for climate modeling
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Climate models with parameterized convection exhibit significant biases in simulating
precipitation (mean, diurnal cycle, intensity) and surface temperature

Daily precipitation distribution
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A fundamental challenge
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Resolving storm structures and two-way interactions may be key to modeling precipitation
and circulation in the tropics and mid-latitude during warm season
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Large-scale circulation
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» Three modeling approaches with computational requirements within reach
for climate simulations:

Limited area models Global variable resolution models Multiscale Modeling Framework

Large-scale forcing (17 I CRM
aerosol |
= | il
Cloud heating, drying
Weather Research and Forecasting (WRF) . - Superparameterized Energy Exascale Earth

System Model (SP-E3SM)
Model for Prediction Across Scales (MPAS)
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IMCS characteristics reasonably simulated v
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(a) MCS Lifetime

» WRF convection permitting simulations at 4 km = Cs e o

B WRF (Mean=16, Std=10)

0.100 +

grid spacing for two warm seasons without
convection parameterization

» Simulations reproduced observed MCS statistics
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Positive feedback from long-lived MCSs to the N
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environment supports their longevity

Interactions between MCSs and their large-scale environment
MCSIHeatling .

» Long-lived MCSs
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Microphysical influence on MCS evolution
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» Comparing WRF convection permitting simulations with Morrison vs. Thompson

microphysics schemes
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MCSs in April and August
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» Model evaluation using initialized forecasts: 4 km (no CP), 12 and 25 km (with CP)

MCS precipitation in April MCS precipitation in August
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MCS large-scale environment

» Strong baroclinic forcing and low level jet support MCS development in spring

e
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» Only weak forcing such as mid-tropospheric perturbations is enough to support MCS development in a
thermodynamically favorable environment in summer

» Limitations in GCM microphysics parameterizations may also be responsible for the biases

Strong synoptic forcing for an MCS in April High pressure system and an MCS in August
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Energy Exascale Earth System Model (E3SM)  rteerees,
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» E3SM vl includes a low resolution (LR ~ 100 km) and a high resolution (HR ~ 25 km) configuration

» A “proof-of-concept” regional refinement model (RRM) with 25 km over North America and 100
km outside has been tested, but improvements are minimal in the Great Plains

Released April 2018
CESM1 —— E3SM VO — E3SMv1

Flux Flux
Coupler Coupler

/Unstructured grids aIIowing\

regional refinement in all
model components
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Climate Model Development and Validation
(CMDV-MCS) project

Simulator
Development

Focus on developing
convection and cloud
microphysics
parameterizations
capable of representing
MCS features in the
E3SM model

Needs on concurrent
measurement data of
microphysics and
dynamics, and high
temporal frequency of
measurements of
environment factors at
the places of ahead of
storms

E3SM Regionally Refined or Uniform
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Evaluation of E3SM using GPM and NexRAD

GPM

E3SM

AGL Height (km)

10 15 20 25 30 35 40 45 50 55

NEXRAD

. i
10 15 20 25 30 35 40 45 50 55

dBZe
E3SM

100.00
50.00
10.00
5.00
3.20
2.40
: é - 1.60
10 15 20 25 30 35 40 45 50 55 120
1.00
0.80

14 e 0.60

AGL Height (km)

10 15 20 25 30 35 40 45 50 55

(Source: Steve Ghan and Jiwen Fan)

10 15 20 25 30 35 40 45 50 55
dBZe

EY — . 0.40
0.20
0.10
0.06
0.04

T Frequency
s === (%)

10 15 20 25 30 35 40 45 50 55 )

14



1 1 Pacific Northwest
E3SM-MMF and global cloud resolving modeling
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E3SM-MMF (ongoing testing of MMF Development of a global cloud resolving
embedded in E3SM at 30km grid spacing) model with RRM for testing

time = 2011-05-20

» Nonhydrostatic spectral element
dynamical core at 3 km grid spacing

» Dynamical core being ported to GPU and
rewritten in C++

PRECT

» Coupled with existing physics
parameterizations

» Development of new physics
parameterization more suitable for
cloud resolving applications
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Ongoing work: Characterizing MCSs globally

» Track MCSs using global geostationary data and GPM dual-
frequency precipitation radar (DPR) overpass data to construct

a global “hybrid tracking-overpass” MCS database
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» Development of MCS tracking and metrics

[ MCS tracking methods ]

mid-summer

Spring to
early summe

[ MP method

FLEXTRKR method
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Considered reanalysis
and climate data

Considered satellite
and radar data
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Develop a satellite and
radar based method

Develop a model
based kinetic method

l— Combined methods —,
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Frequency, trend and
climate connection of
MCS from observational
data in warm season

Future projection of MCS
frequency from climate
data in warm season




Ongoing work: Characterizing impacts of MCSs on ~7
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surface water budgets and flooding in the U.S.

» Use water tagging combined with the U.S. MCS database to trace MCS precipitation
through surface and subsurface processes in land surface models

» Use coupled models to quantify the impacts of MCSs on the terrestrial water balance and
land-atmosphere interactions

» Relate MCS characteristics and antecedent soil moisture to flooding

Water tagging in a land surface model
Recipe of flash flooding ,

Ingredlen’rs
Heavy precipitation
* Deep moist convection
* System movement and
size
e Storm types
(Doswell et al. 1996 WAF)

A land surface hydrological view is missing L e ;

(Hu et al. 2018 JHM)
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» MCSs are ubiquitous and play important roles in precipitation and large-
scale circulation

» Most climate models do not simulate MCSs, as evidenced by their dry/
warm biases and erroneous diurnal cycle of precipitation

» Convection permitting modeling holds some promises to simulate MCS
cloud structures — important connections between large-scale circulation
and precipitation

» Different approaches are being developed and tested

» MCS tracking, MCS data base, and MCS metrics are being developed to
support analysis and modeling
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