

Global Institute for Water Security

www.usask.ca/water



# Drought-related research in western Canada Saskatchewan River Basin RHP & Changing Cold Regions Network

Howard Wheater and Ron Stewart



# Saskatchewan River Basin - a GEWEX Regional Hydroclimate Project





Area 406,000 km<sup>2</sup>

 Drains from continental divide in Alberta, through Saskatchewan to Manitoba



# Prairie Drought of 1999-2004 Described as Canada's most costly natural disaster



- \$5.8 billion decline in GDP 2001-2002
- \$3.6 billion drop in agricultural production, 2001-2002
- 41,000 jobs lost
- BC, Alberta forest fires
- Saskatchewan dust storms



### Relationships between Flow and Growth

Linear correlation coefficients between the growth rates and the water year flows





### Relationships between Flow and Growth



### **Spatial Variation of Paleo-climate**

### Contour maps of five-year average growth rates











#### Reconstruction of Paleo-streamflows

#### North Saskatchewan River



#### **Oldman River**



#### Flow Duration Curves







Drought and Forest Dieback Climate Moisture Index CMI (*P-ET<sub>p</sub>*)

2001-2002 vs. Long-term Mean (Ted Hogg, CFS)

Severe dieback area

- Drought was unusually severe in 2001-2002, driest in >100 years across a large area
- Led to massive, sustained aspen dieback and mortality, especially along the northern edge of the prairies
- CMI maps by D. Price, M.
   Siltanen & D. McKenney, CFS





## Regional, post-drought decline in aspen growth of 30%, widespread aspen dieback and mortality



(photo by Mike Michaelian, CFS)



# Boreal Ecosystem Research and Monitoring Sites (BERMS, 1994+)





### Flux Towers (in operation)













#### White Gull Creek Watershed





### Annual Precipitation and Streamflow White Gull Creek, Oct-Sept Hydrologic Years





### Stand-Level Precipitation, Evapotranspiration and Lateral Outflow $(R = P-E^*-\Delta S)$

(Shaded area shows 2001-2003 drought)





# Annual Stand-Level Outflow R in Relation to Soil Water Storage





# Contrasting Changes in Stem Density and Tree Mortality: Before and After Drought





# Modelling complex water resource systems South Saskatchewan River Basin in Alberta





#### Scenario-based assessment





Water resources system models



Performance measures

### **Vulnerability assessment**





Water resources system models



Performance measures



### **Vulnerability analysis – SSR in Alberta**

**Probability** of system failure under changing headwater flows (annual peak, Peak timing)



Nazemi et al. 2013 WRR 49(1): 291-305

www.usask.ca/water



### **Downstream** – a play by Kenneth T. Williams

- 2014 forum theatre production, *Downstream*, took audience members through an exercise in decision-making when drought and floods threaten.
- Four performances across
   Western Canada Calgary &
   Medicine Hat, Alberta,
   Saskatoon & Cumberland
   House, Saskatchewan.

