GC Climate Extremes Lisa Alexander, Xuebin Zhang, Gabi Hegerl, Sonia Seneviratne ### **GC Climate Extremes** Led by GEWEX, in consultation with CLIVAR White paper (February 2014): X. Zhang, G. Hegerl, S. Seneviratne, R. Stewart, F. Zwiers, L. Alexander Implementation plan (December 2014): L. Alexander, X. Zhang, G. Hegerl, S. Seneviratne Contributions: G. Stephens, F. Zwiers, D. Carlson, J. Sillmann, A. Behrangi #### **GC Climate Extremes** # Understanding and predicting weather and climate extremes #### Status: White paper draft circulated to CLIVAR and GEWEX SSGs paper in December 2013/January 2014 Final white paper posted February 2014 First version of implementation plan is being completed # Many types of weather and climate extremes, different space/time scales - ☐ Heat wave (days, over large region) - Drought (year to decade or longer, continental) - Major flood (days to month, over large region) - Ice storm (day, over small region) - Tornadoes (minutes and several kilometers) - Marine storms (hours to days and thousand kilometers) GDIS/GHP meeting, December 10, 2014 # Impact dimension, extremes definition IPCC SREX report (2012) Climate Extremes, or even a series of nonextreme events, in combination with social vulnerabilities and exposure to risks can produce climate related disasters # White paper: 8 key questions - 1: improved quality of ground-based and remote-sensing based datasets for extremes (GEWEX: GHP and GDAP) - 2: improved models for simulations of extremes (WCRP wide theme) - 3: interactions between large-scale drivers and regional-scale land surface feedbacks affecting extremes (GEWEX: GLASS) - 4: role of external (e.g. anthropogenic) forcings vs internal variability for changes in intensity and frequency of extremes (ETCCDI/IDAG/CLIVAR) - 5: factors contributing to the risk of a particular observed event (ACE/ETCCDI/IDAG/CLIVAR) - 6: causes of drought changes in past and future (GDIS/GEWEX/CLIVAR) - 7: predictability of changes in frequency and intensity of extremes at seasonal to decadal time scales (WGSIP/CLIVAR/GEWEX) - 8: role of large-scale phenomena (monsoons, modes of variability) for past and future changes in extremes (CLIVAR/GEWEX Monsoon panel) # White paper: 8 key questions - 1: improved quality of ground-based and remote-sensing based datasets for extremes (GEWEX: GHP and GDAP) - 2: improved models for simulations of extremes (WCRP wide theme) - 3: interactions between large-scale drivers and regional-scale land surface feedbacks affecting extremes (GEWEX: GLASS) - 4: role of Implementation plan requires focus on selected themes/topics - 5: factors contributing to the risk of a particular observed event (ACE/ETCCDI/IDAG/CLIVAR) - 6: causes of drought changes in past and future (GDIS/GEWEX/CLIVAR) - 7: predictability of changes in frequency and intensity of extremes at seasonal to decadal time scales (WGSIP/CLIVAR/GEWEX) - 8: role of large-scale phenomena (monsoons, modes of variability) for past and future changes in extremes (CLIVAR/GEWEX Monsoon panel) # 4 main extremes, 4 core themes ### 4 core themes improved quality of ground-based and remote-sensing based datasets for extremes (strong involvement of GHP/GDAP/GDIS) #### **DOCUMENT** interactions between large-scale drivers and regional-scale land surface feedbacks affecting extremes (strong involvement of GLASS/GDIS) #### **UNDERSTAND** role of external (e.g. anthropogenic) forcings vs internal variability for changes in intensity and frequency of extremes **ATTRIBUTE** improved models for simulations of extremes SIMULATE/PREDICT #### 4 core themes improved quality of ground-based and remote-sensing based datasets for extremes (strong involvement of GHP/GDAP/GDIS) **DOCUMENT** Subdaily precipitation, Extremes from RS data, Drought monitoring, Data collection (e.g. linked to RHPs, GRDC) interactions between large-scale drivers and regional-scale land surface feedbacks affecting extremes (strong involvement of GLASS/GDIS) **UNDERSTAND** CMIP6 "LandMIPs" (LS3MIP, LUMIP), DICE, CORDEX experiments, GDIS assessments, Diagnostics of land-atmosphere coupling role of external (e.g. anthropogenic) forcings vs internal variability for changes in intensity and frequency of extremes **ATTRIBUTE** improved models for simulations of extremes **SIMULATE/PREDICT** ## Improved observations #### **Sub-daily precipitation Cross-cut project** - GHP: Review of sub-daily precipitation covering observations and modelling with focus on extremes (subm. to Rev. of Geophysics) - While only limited regions of the globe have been studied, most show an increase in subdaily extreme rainfall over the last few decades (but with regional and seasonal variations) #### GEWEX/GHP Regional trends in observed sub-daily extreme rainfall based on published studies (Westra et al., 2014; Rev. Geophysics) ## LandMIPs: e.g. GLACE-CMIP5 GEWEX/GLASS Contribution of mean soil moisture change to change in T and P extremes (late 21st century-late 20th century): GLACE-CMIP5 6 participating ESM modeling groups, >10 are planning to take part in LS3MIP Seneviratne et al. 2013, GRL that provide a deeper understanding of mountain precipitation processes, and to facilitate improvements in numerical weather prediction models, climate models, and hydrological models. The development of observational data sets will be a central activity. In particular, MOUNTerrain will focus on a collation of existing digitized observational data for high-elevation precipitation, and data rescue of high-elevation precipitation records (including quality control), including undigitized meteorological station records and ski-field and alpine clubs records, global and regional reanalysis products, and climate model precipitation fields from CMIP5 and 6. Some of the key questions to be addressed include: - How useful are (and how best to use) remotely sensed and gridded data sets, such as TRMM, GPCP, and reanalyses for characterizing high-elevation precipitation? - How well are we measuring solid precipitation in moun- # Land Processes, Forcings, and Feedbacks in Climate Change Simulations: The CMIP6 "LandMIPs" Sonia I. Seneviratne¹, Bart van den Hurk², Dave Lawrence³, Gerhard Krinner⁴, George Hurtt⁵, Hyungjun Kim⁶, Chris Derksen⁷, Taikan Oki⁶, Aaron Boone⁸, Michael Ek⁹, Victor Brovkin¹⁰, Paul Dirmeyer¹¹, Hervé Douville⁸, Pierre Friedlingstein¹², Stefan Hagemann¹⁰, Randal Koster¹³, Nathalie de Noblet-Ducoudré¹⁴, and Andrew Pitman¹⁵ ¹ETH Zurich, Switzerland; ²KNMI, The Netherlands; ³NCAR, USA; ⁴CNRS/LGGE & U. Grenoble, France; ⁵U. Maryland, USA; ⁶U. Tokyo, Japan; ⁷Environment Canada; ⁸CNRM-GAME, Météo-France; ⁹NOAA/NCEP, USA; ¹⁰MPI for Meteorology, Germany; ¹¹George Mason University, USA; ¹²U. Exeter, UK; ¹³NASA/GSFC, USA; ¹⁴LSCE/IPSL, France; ¹⁵UNSW & ARC CoECCS, Australia (upcoming GEWEX newsletter) # White paper: 8 key questions - 1: improved quality of ground-based and remote-sensing based datasets for extremes (GEWEX: GHP and GDAP) - 2: improved models for simulations of extremes (WCRP wide theme) - 3: interactions between large-scale drivers and regional-scale land surface feedbacks affecting extremes (GEWEX: GLASS) - 4: role of external (e.g. anthropogenic) forcings vs internal variability for changes in intensity and frequency of extremes (ETCCDI/IDAG/CLIVAR) - 5: factors contributing to the risk of a narticular observed event (ACF/ - **ETCCDI** The 4 core themes stem from 4 questions - 6: cause from white paper - 7: predictability of changes in frequency and intensity of extremes at seasonal to decadal time scales (WGSIP/CLIVAR/GEWEX) - 8: role of large-scale phenomena (monsoons, modes of variability) for past and future changes in extremes (CLIVAR/GEWEX Monsoon panel) ace # White paper: 8 key questions - 1: improved quality of ground-based and remote-sensing based datasets for extrem - Other 4 topics are covered by on-going activities / established communities feedbacks affecting extremes (GEWEX: GLASS) - 4: role of external (e.g. anthropogenic) forcings vs internal variability for changes in intensity and frequency of extremes (ETCCDI/IDAG/CLIVAR) - 5: factors contributing to the risk of a particular observed event (ACE/ ETCCDI/IDAG/CLIVAR) - 6: causes of drought changes in past and future (GDIS/GEWEX/CLIVAR) - 7: predictability of changes in frequency and intensity of extremes at seasonal to decadal time scales (WGSIP/CLIVAR/GEWEX) - 8: role of large-scale phenomena (monsoons, modes of variability) for past and future changes in extremes (CLIVAR/GEWEX Monsoon panel) ## Timeline of activities | Date | Activity | Title | Location | Coordinator(s) | Expected concrete outcomes | |-----------|------------------|---|----------------------|--|---| | July 2014 | Summer school | Attribution and
Prediction of
Extremes Events | Trieste, Italy | Sonia
Seneviratne,
Francis Zwiers | Special Issue Weather and Climate Extremes | | Sep 2014 | Workshop | Lessons learnt for
Climate Change
Research and
WCRP (invitation-
only) | Bern,
Switzerland | Xuebin Zhang,
Gabi Hegerl | Break out group
summary | | Dec 2014 | Drought workshop | An International Global Drought Information System Workshop: Next Steps (invitation only) | Pasadena,
USA | GDIS – Siegfried
Schubert et al. | TBA | | Feb 2015 | Data workshop | Data requirements to address the WCRP Grand Challenge on Weather and Climate Extremes: Observations and Models (invitation- only) | Sydney,
Australia | Lisa Alexander,
Xuebin Zhang,
Gabi Hegerl,
Sonia
Seneviratne | Data inventory. Best Practice documentation for gridding data. Data intercomparison | ## Timeline of activities | Mar 2015 | RClimdex/FClimdex
updates | ETCCDI software
updated to
incorporate new
relevant indices | N/A | Xuebin Zhang,
Lukas
Gudmundsson | Standardised,
tested and
documented
software
available for the
community | |----------|---|---|------------------------------|---------------------------------------|---| | May 2015 | Process understanding and model evaluation workshop | Advancing our understanding and modeling of climate extremes by combining physical insights with statistical methodology | Oslo, Norway | Jana Sillmann | storylines and
set of metrics
developed | | Jun 2015 | IUGG 2015 | Joint Symposium on Extreme Hydrological Events and IAMAS Symposium on Understanding and Predicting High Impact Weather and Climate Events | Prague,
Czech
republic | Christophe Cudennec, Richard Swinbank | TBA | ### Timeline of activities | Jul 2015 | 2015 United Nations
Climate Change Conference | Proposed sessions
on extreme events
research | Paris, France | Session 1: Robert
Vautard, Peter
Stott, Fredericke
Otto;
Session 2: Jana
Sillmann | TBA | |----------|---|---|--------------------------|--|----------------------| | Aug 2015 | Summer School | Climate extremes | Ticino,
Switzerland | Sonia Seneviratne, Reto Knutti | TBA | | Nov 2015 | Summer School | Climate extremes | France | Pascal Yiou | TBA | | Dec 2015 | AGU | Special Session on extremes | San
Francisco,
USA | TBA | TBA | | 2016 | TC and the severe local weather workshop | Tropical Cyclones
and High impact
weather and
climate change
(small targeted but
not closed) | New York,
USA | Adam Sobel,
WWRP | | | 2016 | Conference | 13 th International
Meeting on
Statistical
Climatology | Vancouver,
Canada | Xuebin Zhang | TBA | | 2017 | Open Science conference
(similar to WCRP OSC but
focusing only on extremes) | Grand Challenge
on Extremes | TBA | TBA | Input to IPCC
AR6 | # 4 main extremes, 4 core themes